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We test 20+ LLMs and compare to human

baseline to shed light on:

e Do LLMs produce sensible causal judgments™?

e Do LLMs reproduce humans biases*?

e Human-LLM alignment*?

e \What reasoning strategies do LLMs employ*?

e Causal reasoning as a function of prior knowledge,
irrelevant information, reasoning budget

Relevance

e As Al-systems increasingly assist human
decision-making, understanding their causal
reasoning biases is critical for their safe

deployment and reliability.

11 Causal Inference Tasks:
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Domain: Sociology

Domain introduction: Sociologists seek to describe and predict the regular
patterns of
societal interactions. To do this, they study some important variables or
attributes of societies. They also study how these attributes are responsible
for producing or causing one another.
- Causal mechanism: Assume you live in a world that works like this:

*C1 — E: High urbanization causes high socio-economic mobility.

- Explanation: Big cities provide many opportunities for financial and

social improvement.

*C2 — E: Also, low interest in religion causes high socio-economic mobility.

- Explanation: Without the restraint of religion-based morality, the impulse
toward greed dominates and people tend to accumulate material wealth.
- Observation: Now suppose you observe the following: low socio-economic
mobility and low urbanization. q‘o

Inference task, here XI: 0

Given the observations and the causal mechanism, how likely on a
scale from O to 100 is high urbanization? O means definitely not likely
and 100 means definitely likely.

Content Variations:

- Abstract: weak xL3%$1jk9ls causes high @asdf8G~sW
- Irrelevant information added

Results

Like Humans, LLMs judge
the effect as more likely in
the face or more causes

Human Reasoning is Biased!
(1) Markov Violation: 4i chater and

Oaksford, 2011; Mayrhofer and M. R. Waldmann, 2016; Park
and Sloman, 2013; Rehder and M. R. Waldmann, 2017

There are few ) to
comparisons, comparing
humans and Al on the exact
same tasks: Gandhi et al.
(2023), Lampinen et al
(2024), Keshmirian et al
(2024), Dettki et al (2025)
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LLMs Can Predict Human Judgements Reasoning Strategies

e Smaller/older models less aligned than
larger/SOTA models

e CoT improves alignment for less aligned
models under Direct prompting up to

ceiling effects

*on collider graphs

Human-LLM alignment:

e CoT increases alignment for less aligned
LLMs under Direct prompting
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Probabilistic vs deterministic Reasoning

e CoT increases alignment
LLMs under Direct prom

e Causal Bayes nets fitted
to agents’ probability

judgements
LADagent

Human Reasoning is
Biased! (2) Little to no
Explaining Away: rembech anc

Rehder, 2013; Rottman and Hastie, 2014
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Limitations

e Generalizability and prompting induced biases
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e |LLMs tend to be more

deterministic / rule-following

than humans, with a handful
of LLMs exhibiting more

probabilistic reasoning than

humans*.

CoT alleviates low reasoning
consistency under direct prompting
reducing content effects
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