

Do Large Language Models Understand Cause and Effect?

1 The nature of intelligence in both humans and machines is a long-standing question in cognitive science. While there is no
2 universally accepted definition, the ability to reason causally is often regarded as a pivotal aspect of intelligence (Lake et al.,
3 2017). Large Language Models (LLMs), trained on vast text volumes, have demonstrated impressive capabilities in generating
4 human-like text given a prompt. This has sparked a debate about whether these models have the capacity for “understanding”
5 (Mitchell et al., 2023) or if they rely primarily on statistical patterns in human language (Willig et al., 2023). While evaluating
6 how well LLMs perform causal inference is an active field of research (Kiciman et al., 2023; Jin et al., 2023), their performance
7 has rarely been contrasted to those of humans on the same tasks. This is a key question, which provides insights into whether
8 LLMs reproduce human biases and whether their performance lags or even exceeds human capabilities to reason causally.

9 **Contribution** This work investigates the causal reasoning abilities of language models by benchmarking them on custom,
10 well-defined causal inference tasks against the performance of human subjects. We algorithmically generated a dataset of nat-
11 ural language causal inference question based on an underlying graph. In contrast to Keshmirian et al. (2024), we focus on the
12 collider graph, rather than the chain or common-cause graph, allowing us to investigate phenomena like “explaining away”, for
13 which human causal reasoning is known to be biased (Rehder, 2014; Cruz et al., 2020). Following Jin et al. (2023), to assess
14 reliance on statistical patterns rather than causal inference, our dataset consists of “commonsensical” scenarios, meaning the
15 variables and relationships align with the physical world, and “anti-commonsensical” scenarios, which are physically implausible
16 but constitute a valid causal inference task. We find that humans outperform LLMs on our custom dataset, but the difference
17 between ChatGPT4 and humans is not as pronounced as one might expect, while ChatGPT-3.5 performs no better than chance.

18 **Dataset Generation** We algorithmically generated the causal inference dataset in
19 two steps: First, we choose a causal model of the “world”, given by a Causal Bayesian
20 Network (CBN) (Pearl, 2009), and observations of the causal variables C_1, C_2 and ob-
21 served effect E , as well as a query type (e.g. $P(C_1 | C_2, E) < P(C_1 | E)$?). Next, we
22 select the empirical alignment (commonsensical or anti-commonsensical), the “story”
23 describing the causal variables in natural language (see Fig. 1 for illustrations), and
24 finally synthesize the full causal inference task into a prompt. Our focus is on the col-
25 linder graph, linking two causes to a common effect via AND, OR, or XOR. This enables
26 comparison with human studies on how observing C_2 affects the inferred probability
27 of C_1 . Specifically, whether the underlying causal structure implies *explaining away*
28 ($P(C_1 | C_2, E) < P(C_1 | E)$), *augmentation* ($P(C_1 | C_2, E) > P(C_1 | E)$), or
29 *conditional independence* ($P(C_1 | C_2, E) = P(C_1 | E)$). Humans exhibit systematic
30 biases in these causal inferences, diverging from the ground truth (Rehder, 2014; Cruz
31 et al., 2020), which prompts the question: Do LLMs replicate these biases?

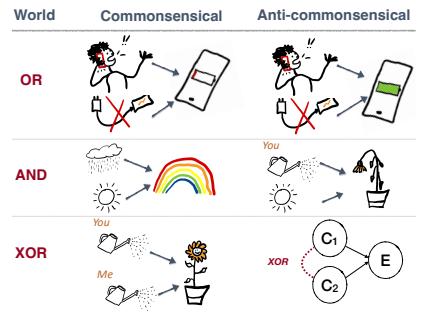


Figure 1: Illustrations of prompts given a causal “world” model and an empirical alignment type.

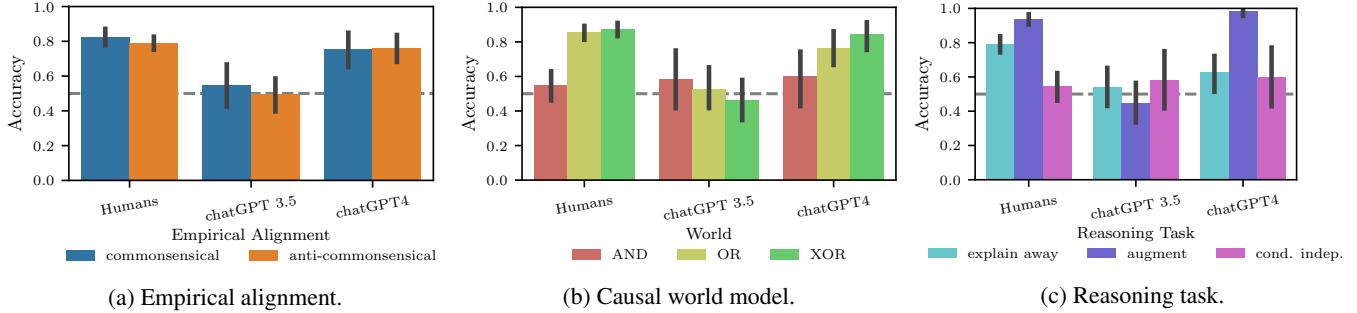


Figure 2: Accuracy of recorded answers compared to normative ground truth answer with 95% CI computed via bootstrapping.

32 **Results** We compared ChatGPT-3.5, ChatGPT-4, and four human subjects on 180 causal inference questions. As Fig. 2 shows,
33 on average humans outperformed LLMs with 0.80 accuracy, followed by ChatGPT-4 (0.76), while ChatGPT-3.5 performed no
34 better than chance. Stratified by empirical alignment, humans performed slightly better in the commonsensical scenario (0.83)
35 than the anti-commonsensical one (0.79), while ChatGPT-4 performed equally in both (0.76), and ChatGPT-3.5 showed no
36 significant difference (Fig. 2(a)). Broken down by “world” (AND, OR, XOR), humans struggled most with the AND relationship
37 (0.55) and performed best at XOR (0.88) (Fig. 2(b)). ChatGPT-4 followed a similar trend but with lower accuracy, except for AND,
38 while ChatGPT-3.5 showed opposite patterns. Humans’ struggles with the AND world suggest difficulty grasping conditional
39 independence. ChatGPT-4 shares this bias, confirmed by Figure 2(c), where both perform best on augmentation and worst on
40 conditional independence tasks. In summary, humans outperform LLMs on causal inference tasks, though the gap is smaller
41 than expected, suggesting LLMs have some causal reasoning ability. Humans’ reliance on pattern matching is hinted at by
42 stronger performance on commonsensical questions. LLMs have been previously demonstrated to also only act as “causal
43 parrots” (Willig et al., 2023). Our results so far do not clearly support this observation for ChatGPT4. Future work should
44 investigate the extent to which LLMs can generalize causal ideas beyond their training distribution and compare it to human
45 performance on the same tasks, as piloted in this work.