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Abstract
Large Language Models (LLMs) have made significant strides in natural language processing
and exhibit impressive capabilities in natural language understanding and generation. However,
how they reason, and to what degree they align with human reasoning remains underexplored. To
this end, we evaluate over 20 LLMs on 11 causal reasoning tasks formalized by a collider graph
and compare their performance to that of humans on the same tasks. We also evaluate to what
extent causal reasoning depends on knowledge about common causal relationships in the natural
world, on the degree of irrelevant information in the prompt, and on the reasoning budget.

We find that most LLMs are aligned with human reasoning up to ceiling effects with chain of
thought increasing alignment for LLMs that were misaligned under single-shot prompting. We
further find that most LLMs reason in a more deterministic, rule-like way than humans. Chain-of-
thought prompting increases reasoning consistency and, under noisy prompts, also pushes some
LLMs’ reasoning from a probabilistic to a more deterministic regime. Reasoning is robust to
replacing real-world content with abstract placeholders but degrades when prompts are injected
with irrelevant text; in these cases, chain-of-thought recovers much of the lost performance.
Across experiments, many models exceed human baselines on qualitative reasoning signatures
such as explaining-away and Markov compliance, which humans typically exhibit only weakly or
violate.

Together, we find a divergence in reasoning style: humans rely more on probabilistic judgments,
whereas many LLMs default to near-deterministic rules. Such determinism can enhance reliability
and augment human reasoning by providing stable, rule-like outputs. Yet it also risks failure in
real-world settings where uncertainty is intrinsic, underscoring the need to better characterize
LLM reasoning strategies to guide their safe and effective application.
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Notation

1 Large Language Models
OpenAI GPT Models
OpenAI’s GPT models follow a naming convention that indicates the model version, and size
(e.g., gpt-4.1-mini).

GPT-5 family naming scheme The GPT-5 family uses different runtime control fields that
replace the conventional “temperature” parameter from its predecessors.

We introduce a compact, self-descriptive model name that encodes the model variant together
with its two unique runtime control fields.

The canonical pattern is:

gpt-5-<variant>-v-<verbosity>-r-<effort>

Where: - <variant> denotes the specific GPT-5 variant (e.g., “gpt-5-nano”). - v / verbosity
controls the length/detail of the model’s output. Accepted values: low, medium, high. - r /
reasoning_effort controls the model’s internal reasoning effort. Accepted values: minimal,
low, medium, high.

OpenAI’s Reasoning Models Reasoning models follow a different naming convention, starting
with an “o” followed by their version and size (e.g., o1, o3-mini).

Claude Models
Claude models end with a date stamp indicating a specific snapshot of the model. claude-sonnet-4-20250514
identifies the Sonnet-4 variant from May 14, 2025.

2 Basic Mathematical Objects and Abbreviations

vii



Notation

Probability Theory

P(·) Probability of an event
P(· | ·) Conditional probability of an event
E(·) Expectation of a random variable
Cov(·, ·) Covariance between two random variables
Var(·) Variance of a random variable

Distributions and densities.

N (µ,Σ) Gaussian distribution
N (x;µ,Σ) Gaussian probability density function

Machine Learning

n Number of training data
X Training data inputs
y Training data targets
θ Parameters of a model
ℓ Loss function

Acronyms & Abbreviations

AI Artificial intelligence
LLM Large language model
API Application programming interface
BR Bayes’ rule
PR Product rule
IA Independence assumption
M Marginalization
LLM Large language model
CoT Chain of Thought
CBN Causal Bayesian network
GPU Graphics processing unit
i.i.d. independent and identically distributed
MD Model Definition
MAP Maximum a posteriori estimation
MAE Mean absolute error
L-BFGS Limited memory BFGS, a type of quasi-Newton method
RMSE Root mean square error
RW17 Rehder and Waldmann [1] tasks
RW17 Over /
RW17 Overloaded

Overloaded version of the Rehder and Waldmann [1] tasks
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2 Basic Mathematical Objects and Abbreviations

SOTA State of the art
Abstract Over / Ab-
stract Overloaded

Abstract overloaded version of the Rehder and Waldmann [1] tasks
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Introduction

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Code and Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

Courtroom 4. The judge’s stomach growls—it’s been hours since their last meal.
This is the 34th case since the court opened at 8:00 a.m., and the third borderline
one in a row. Eyes gritty from decision fatigue, she defaults to the status quo when
uncertain. She ticks the box for continued detention. “Next case.” Recess in six
minutes.

Primary Care Clinic. Nine hours into her shift, the physician opens the chart of
the 39th patient today. Congestion, fever, clear lungs. The guideline says watchful
waiting, but fatigue clouds judgment. The “just-in-case” antibiotic order goes in with
two clicks. “Next patient.”

Same inputs, varying outputs: human decision-making can be severely impaired by
hunger, fatigue and cognitive depletion—metabolic constraints that everybody is

subject to.

These examples illustrate well-documented effects of how metabolic states such as fatigue and
hunger impact human judgment and decision making. Judges’ leniency declines as sessions
progress [2], while inappropriate antibiotic prescriptions rise hour-by-hour in medical settings

1



Chapter 1 Introduction

[3]. Sleep loss shifts risk sensitivity, mild dehydration impairs working memory, and decision
fatigue systematically biases choices toward default options [4–6].

Such findings motivate AI-assisted decision-making. In principle, computational systems could
provide consistent, fatigue-resistant analysis to complement human judgment. In fact, Large
Language Models (LLMs) are increasingly deployed for a wide variety of decision-making tasks
in high-stakes scenarios – for example in the court system [7] and in medical institutions [8].
However, successful deployment requires understanding whether AI systems exhibit genuine
reasoning capabilities or rely on sophisticated but brittle pattern matching [9]. This distinction
becomes critical in high-stakes domains where genuine causal understanding is required and
purely associative pattern matching is not sufficient for good decision-making.

1.2 This Thesis
Human decision-making suffers from systematic biases and metabolic constraints, motivating AI
assistance. However, deploying AI systems requires understanding how they reason about cause
and effect, not just whether they produce correct answers. To that end, we need diagnostic tools
that distinguish genuine causal understanding from associative reasoning.

In this work, we introduce a causal reasoning benchmark with paired human data and a cognitively-
grounded framework to evaluate normative reasoning. This framework is built on simple causal
Bayesian networks with interpretable parameters which expose reasoning strategies: normative
reasoning is defined as the existence of a set of parameters in a causal Bayes net that closely
fits an agent’s judgments, while associative shortcuts occur when an agent relies on superficial
correlations rather than underlying causal reasoning. We identify reasoning signatures that Large
Language Models (LLMs) seem to operate by and compare them to human reasoning patterns on
the exact same tasks. This framework helps understand to what degree agents are able to solve
causal reasoning tasks, for example revealing where on the spectrum between deterministic and
probabilistic reasoning LLMs fall, whether they are robust to content manipulations, and how
alike they are to human reasoning and biases.

Research Questions More specifically, this thesis aims to empirically address the following
research questions:

Q1 Domain differences. Do agents reason differently across knowledge domains (economics,
meteorology, sociology)?

Q2 Human-LLM alignment. How do LLM likelihood judgments correlate with human
judgments on matched causal inference tasks and does chain-of-thought prompting affect
alignment?

Q3 Normative reasoning. Are LLMs well-described by causal Bayes nets and consequently
can be said to reason normatively?

Q4 Reasoning consistency. Do LLMs generalize across related causal tasks (measured via
cross-validated performance)?

2



1.2 This Thesis

Q5 Cognitive strategies. What parameter signatures distinguish different reasoning ap-
proaches —- deterministic vs. probabilistic?

Q6 Robustness and genuineness. Does performance transfer across content manipulations
(semantic vs. abstract prompts, clean vs. overloaded contexts), indicating reasoning beyond
surface-level pattern matching?

1.2.1 Contributions
This work makes both methodological and empirical contributions toward measuring causal
reasoning in language models under different manipulations and toward understanding the
alignment with human and normative reasoning.

• Causal reasoning benchmark. We introduce a causal reasoning benchmark with paired
human data centered on common-effect relationships, for which humans are known to
exhibit cognitive biases.

• Diagnostic framework. We propose a causal Bayesian network–based evaluation frame-
work that produces interpretable parameter profiles and consistency measures, enabling
systematic distinction between normative and associative reasoning strategies in LLMs.

• Human–LLM alignment. We demonstrate that state-of-the-art models reach ceiling-level
alignment with human judgments (Spearman ρ ≈ 0.85), the apparent upper bound given
human response variability.

• Reasoning regimes. We identify two characteristic modes of inference: deterministic,
rule-like reasoning often occuring in frontier models, and probabilistic, association-driven
reasoning frequently present in smaller or older models.

• Conditional prompting effects. We show that chain-of-thought prompting primarily
stabilizes reasoning consistency; under noisy prompts it additionally shifts models toward
more normative causal patterns, with greatest benefits for weaker models.

• Robustness to content manipulations. We find that reasoning is largely preserved under
semantic abstraction, but degrades under overload from irrelevant information—losses that
chain-of-thought can recover for many models.

Overall, we demonstrate that frontier language models can reason causally about common-effect
relationships, even under prompt manipulations, and that they are largely aligned with human
reasoning, at times surpassing it.

1.2.2 Code and Reproducibility
As new LLMs are released at a rapid pace, it is crucial to have open-source tools that allow
researchers to test new models on established benchmarks and create new ones. As part of this
thesis we provide CAUSAIIGN, a software package that was developed alongside this thesis and
allows to a) compare new LLMs with humans on our established benchmarks, b) fit causal Bayes
nets to their responses, and c) easily create new collider based causal inference tasks with custom

3

https://github.com/hmd101/causAIign


Chapter 1 Introduction

content manipulations that are directly comparable to our existing collider reasoning benchmarks
and human baseline.

https://github.com/hmd101/causAIign

All code and data to reproduce the results in this thesis are publicly available in the GitHub
repository above.

1.3 Related Work
Cognitive Interpretability of AI Systems This work contributes to the emerging field of Cog-
nitive Interpretability—understanding not just whether AI systems succeed at tasks, but how they
succeed [10]. We combine behavioral accounts that compare human and LLM reasoning patterns
with processing accounts that give rise to potential latent computational strategies underlying their
behavior. Our study provides one of the few direct human-LLM comparisons on matched cogni-
tive tasks, joining recent work on social reasoning [11], logical inference [12], causal strength
judgments [13] and extending Dettki et al. [14]. We extend this line by introducing a formal
framework for inferring reasoning strategies from compact model fits—revealing whether models
employ normative computation, associative shortcuts, or hybrid approaches across different
conditions.

Evidence For and Against Causal Reasoning in LLMs While Dettki et al. [14] have found
some evidence of causal reasoning in collider graphs and alignment with human-like reasoning,
Willig et al. [9] have argued that LLMs lack genuine causal understanding beyond pattern
matching, describing LLMs as causal parrots. They argue that LLMs are not causal and their
apparent successes arise from correlations among textual causal facts encoded in a proposed
meta-structural causal models (SCM). These two studies represent complementary perspectives
on LLM causal reasoning rather than contradictory ones. Dettki et al. [14] conducts a targeted
human–LLM comparison on collider graphs, a simpler causal structure than those studied by
Willig et al. [9], but a well studied one in humans, making it particlularly suitable for human-LLM
comparison. In this work we build on Dettki et al. [14] by expanding the set of models tested,
introducing a measure of reasoning consistency and a more cognitively grounded analysis. We
also investigate robustness to content manipulations inspired by Mirzadeh et al. [15] and Jin et al.
[16] as discussed below.

Robustness of LLMs to Content Manipulations Shi et al. [17] and Mirzadeh et al. [15]
demonstrated that introducing irrelevant context can drastically alter the outputs of LLMs. Jin et al.
[16] introduced a systematic benchmark for causal reasoning in LLMs, by evaluating performance
on a plethora of reasoning tasks embedded in a variety of causal graph topologies with content
manipulations, replacing real world scenarios with nonsensical abstract ones. However, they did
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not include direct human comparison data and their tasks would require college level introductory
Math classes. We build on this line of work by evaluating whether LLMs maintain normative
causal reasoning patterns under content manipulations, replacing real-world scenarios with
abstract placeholders and akin to Mirzadeh et al. [15], we dilute the signal-to-noise ratio by
injecting irrelevant information.
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2.1 Causal Bayesian Networks (CBNs)

C1 : 1 C2 : 0

E

Figure 2.1: Collider graph en-
coding p(C1 = 1 | C2 = 0)
(task V in Figure 4.2(c)).

Pearl’s framework of Causal Bayesian Networks (CBNs) provides
the foundational formalism for normative causal reasoning [18].
Causal Bayes nets encode causal relationships through directed
acyclic graphs where nodes represent random variables and edges
represent direct causal influences. In this thesis, we present agents
with a simple induced causal structure with two binary causes
C1, C2 ∈ {0, 1} and one binary effect E ∈ {0, 1} and model the
agents’ causal judgments with a (C1 → E ← C2) collider graph-
induced causal structure with a causal Bayes net. Numerous
studies have shown that causal Bayes nets (CBNs) provide a
good model of human causal reasoning [19–21]. An important
question we ask in this study is whether causal judgements by
Large Language Models (LLMs) can also be well-modeled by
causal Bayes nets.
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Chapter 2 Background

2.2 A Simple, Interpretable Model of Causal Reasoning

We adopt a leaky noisy-OR link to separate background propensity from causal strengths. For
causes C1, C2 ∈ {0, 1} and effect E,

Pr(E=1 | C1, C2) = 1− (1− b) (1−m1)
C1 (1−m2)

C2 , (2.1)

with leak / background propensity b ∈ [0, 1] and causal strengths m1,m2 ∈ [0, 1]. We also fit
priors and enforce them to be symmetric p(C1) = p(C2) and consider a three and four parameter
tying scheme (m1=m2 vs. free). Parameters live in [0, 1] and support cognitive interpretations:
low b/high m⇒ deterministic regimes; elevated b/attenuated m⇒ probabilistic regimes.

As opposed to Dettki et al. [14], who use a logistic link, we here use a leaky noisy-OR link
function for E for the following reasons: Relative to a logistic link, the noisy-OR affords (i)
cognitive grounding via Cheng’s causal power theory [22], and (ii) interpretable parameters
separating background propensity (b) from causal sensitivity (mi), while scaling naturally to
multiple parents [23–25].

2.3 Collider Graph-specific Reasoning Signatures

We follow the RW17 collider family (eleven tasks I-XI) spanning predictive inference, indepen-
dence checks, and diagnostic inference. Three key signatures of collider / common-effect graph
reasoning are discussed next.1

2.3.1 The Effect is More Likely if More Causes are Present

Numerous studies have shown that humans know that in a collider structure, the effect is more
likely to occur if more causes are present [20, 26–28]. Dettki et al. [14]2 show that LLMs also
demonstrate this basic property of collider-based reasoning (see Figure 4.2(b) for a subset of
LLMs and humans).

2.3.2 Explaining Away (EA)

Explaining away (EA) is a key signature of collider/commone-effect graph reasoning. Evidence
for one cause reduces belief in the alternative cause in the presence of the effect:

EA iff Pr(C1=1 | E=1)− Pr(C1=1 | E=1, C2=1) > 0.

1From here on forward, we use the terms collider and common-effect graph interchangeably.
2An earlier version of this work was published at the 47th Annual Meeting of the Cognitive Science Society in San

Francisco [14].
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Example for Explaining Away Consider the well-known example of a burglar alarm [29].
Suppose the alarm can be triggered (E) either by a burglary (C2) or by an earthquake (C1). If we
hear the alarm (E = 1), both C2 and C1 become more likely. However, once we learn that an
earthquake (C1 = 1) has in fact occurred, the probability of a burglary decreases: the earthquake
explains away the burglary. Formally,

P (C2 = 1 | E = 1) > P (C2 = 1 | E = 1, C1 = 1).

Visually, explaining away is represented by a positive slope in Figure 4.2(d).

2.3.3 Markov Violation (MV)

Independence of causes in a collider means that the state of one cause should not inform belief in
the other cause in light of the absence evidence about the effect:

MV small iff
∣∣Pr(C1=1 | C2=1)− Pr(C1=1 | C2=0)

∣∣ ≈ 0.

We compute EA/MV on normalized raw likelihood judgments (not model predictions).

Example for Markov condition Using again one of the classic examples by Judea Pearl [25]: If
an automatic sprinkler runs on a fixed timer, Rain (R) and Sprinkler (S) are independent causes
of Wet grass (W ). Let R (rain) and S (sprinkler) be causes of wet grass W with R→W ← S.
Under independence of causes, Pr(S=1 | R=1) = Pr(S=1 | R=0) and MV =

∣∣Pr(S=1 |
R=1) − Pr(S=1 | R=0)

∣∣ ≈ 0. When the sprinkler is suppressed when it rains, this yields a
Markov violation MV > 0 (negative association).

In our tasks, we always state that causes independently generate the effect, so agents should show
MV ≈ 0. Visually, Markov violation is represented by a flat slope in Figure 4.2(c).

2.4 Why Collider Graphs?
Humans Show Weak Explaining Away and Markov Violations It has been repeatedly ob-
served that humans show too little or no explaining away [19, 30]. Humans who are asked to
judge the likelihood of one cause have repeatedly shown to be influenced by the absence or
presence of an alternative cause [1, 31–33] (Markov violation). Whether LLMs show similar
human biases is an open question we address in this thesis (see Section 4.5).

2.5 Large Language Models (LLMs)
Large language models (LLMs) are neural networks that model the probability of text sequences
at the token level. Concretely, given tokens x1:n, an autoregressive LLM factorizes the sequence
likelihood as

pθ(x1:n) =
n∏

t=1

pθ(xt | x<t), (2.2)

9
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and is trained to minimize next-token prediction loss

L(θ) = −
n∑

t=1

log pθ(xt | x<t). (2.3)

Modern LLMs are built on the Transformer architecture [34], which replaces recurrence with
self-attention. For queries Q, keys K, and values V , a single attention head computes

Attn(Q,K, V ) = softmax

(
QK⊺

√
dk

)
V, (2.4)

with a look-ahead mask3 ensuring each position attends only to past tokens in generation. Stacks
of multi-head attention and feed-forward layers, plus residual connections and layer normalization,
yield scalable sequence models.

Although masked-language models (e.g., BERT; [35]) are widely used for understanding tasks,
this thesis focuses on autoregressive LLMs because they are the standard models such as GPT,
Gemini and Claude models used by practitioners. Two empirical regularities contextualize
capabilities: (i) scaling laws that relate performance to model size, data, and compute [36], and
(ii) compute-optimal training recommending more tokens per parameter than previously typical
[37]. In practice, base models are adapted via prompting (in-context learning) [38], instruction
tuning and reinforcement learning from human feedback (RLHF) [39], and sometimes external
retrieval to ground outputs in evidence [40].

3Also known as masked-self-attention or a causal mask, it prevents attending to future tokens.
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This chapter details our experimental methods for collecting and analyzing causal inference
judgments from both humans and large language models (LLMs) on causal reasoning tasks
embedded in a collider graph structure. We describe the dataset we compiled based on existing
human data comprised of causal inference tasks, how those tasks were verbalized into prompts
suitable for LLMs and how the data was collected from both humans and LLMs.

3.1 Causal Inference Tasks from Rehder and Waldmann [1]
We use human data from Rehder and Waldmann [1] (Experiment 1, Model-Only condition,
N = 48 undergraduate students at NYU), who collected likelihood judgments of causal inference
tasks verbalizing a collider graph C1 → E ← C2, and compare these to LLM judgments on the
same tasks. 1

3.1.1 Causal Inference Tasks.

The collider structure was instantiated in 11 different causal inference tasks (I-XI) grouped into
four diagnostic groups (see Figure 4.2 for an overview). Each task differed in which nodes

1Subsequently, we will refer to the original dataset from Rehder and Waldmann [1] as RW17.
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Chapter 3 Causal Reasoning Benchmark

Figure 3.1: Dataset Illustration of RW17. The left most graph represents task X from the
diagnostic inference group. The nodes are colored according to: → latent (query node); →
observed ∈ {0, 1}.

were observed and which node was queried 2 for which both humans and LLMs were asked to
provide a likelihood judgment on a continuous scale (0-100) given the observations. Importantly,
variables were always binary and there is no ground truth likelihood for the query node given
the observations, as the causal strengths and priors were not specified to subjects. Furthermore,
humans were explicitly instructed that each cause can bring about the effect independently, which
we also reflect in the prompts given to LLMs.

Having no ground truth likelihoods is a key feature of this dataset, as it allows us to study the
qualitative patterns of causal inference judgments across different agents, for example, whether
agents lean more towards probabilistic or deterministic reasoning behavior, or whether they
exhibit explaining away behavior which humans typically do only weakly [1].

3.1.2 Cover Stories and Knowledge Domains

Rehder and Waldmann [1] embed the collider causal structure C1 → E ← C2 in one of
three cover stories from three different knowledge domains (meteorology, economics, and
sociology), allowing for a natural language description of the causal structure (see Figure 3.1).
The three domains were chosen because the undergraduate subjects were expected to be relatively
unfamiliar, such that their causal inferences would reflect the causal structure given to them and
not idiosyncratic prior knowledge. Nevertheless, as an additional safeguard, the direction of each
variable was counterbalanced (e.g., in the domain of sociology, some subjects were told that
high urbanization causes high socio-economic mobility, others that it causes low socio-economic
mobility, etc). In fact, Rehder and Waldmann [1] did not find significant effects of domain or
the counterbalancing factor, suggesting that subjects’ inferences were not strongly influenced by
domain knowledge.

2Rehder and Waldmann [1] only inquired about a query node being present, i.e., 1.
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3.1.3 Experimental Protocol for Humans

The experiment for humans consisted of two phases. In the learning phase subjects were presented
and tested on the domain knowledge, including the causal mechanisms. In the testing phase
they were presented with each of the inference tasks in random order on a sequence of four
computer screens. A graphical representation of the collider structure remained on the screen
during testing.

3.2 A Causal Reasoning Benchmark for LLMs with A Human
Baseline

A key contribution of this work is the compilation of a causal inference task benchmark as de-
scribed in Section 3.1.2, enabling direct comparisons between human causal inference judgments
collected in Rehder and Waldmann [1] and LLMs. The benchmark is designed to replicate the
experimental conditions of Rehder and Waldmann [1] (Experiment 1, Model-Only condition) as
closely as possible with notable differences and extensions described below.

Part of this benchmark was published during the course of this thesis in the following work:

[14] H. M. Dettki et al. “Do Large Language Models Reason Causally Like Us? Even Better?”
In: Annual Conference of the Cognitive Science Society (2025)

3.2.1 Experimental Protocol for LLMs

In contrast to humans for the LLMs each textual prompt included both the content of the training
and testing phase in a single prompt without the actual testing prompt that humans received and
no graphical representation. The different domains and inference tasks were presented within
each of the four counterbalancing groups. Whereas humans provided their probability judgments
using a slider ranging from 0 to 100 with default setting=50.0, LLMs were instructed to provide a
numerical answer ∈ [0.0, 100.0].

Example Prompt Below is an example prompt from the sociology domain, matching the visual-
ization in Figure 3.1 and diagnostic task X in Figure 4.2(e), where the query node ( ) is C1 = 1
and C2 and the effect E are known to be absent. Note that only the italicized text following “:”
was presented to LLMs in one piece.

• Domain introduction:
– Sociologists seek to describe and predict the regular patterns of societal interactions. To do

this, they study some important variables or attributes of societies. They also study how these
attributes are responsible for producing or causing one another.

• Causal mechanism:
– Assume you live in a world that works like this:

* C1→ E: High urbanization causes high socio-economic mobility.
· Explanation: Big cities provide many opportunities for financial and social im-

provement.
* C2→ E: Also, low interest in religion causes high socio-economic mobility.
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· Explanation: Without the restraint of religion-based morality, the impulse toward
greed dominates and people tend to accumulate material wealth.

• Observation:
– Now suppose you observe the following: low socio-economic mobility and low urbanization.

• Inference task, here X:
– Your task is to estimate how likely it is that low interest in religion is present on a scale from

0 to 100, given the observations and causal relationships described. 0 means completely
unlikely and 100 means completely likely. Note that each of the causes can bring about the
effect independently. Please provide your answer as a single number between 0 and 100,
where 0 means very unlikely and 100 means very likely. Do not include any explanations or
additional text.

Prompting Configuration and Reasoning Effort We test a range of LLMs from different
providers (OpenAI, Anthropic, and Google) and model families (reasoning, non-reasoning,
different model sizes) via their respective APIs. These models differ in how they can be configured
to use additional budget for reasoning.

For all models, we use zero-shot (Numeric prompt-category) and chain-of-thought (CoT) prompt-
ing, where we ask the model to “think step by step” before answering, i.e. providing a likelihood
judgment of the query node being 1. Where applicable, we set the temperature to 0.0 to get the
most deterministic responses. For the GPT-5 family, we test different levels of reasoning effort
configurable via the reasoning_effort parameter in the API. Another parameter unique to
GPT-5 is verbosity, which we set to low.

3.2.2 Prompt and Content Manipulations

We also evaluate to what extent causal reasoning depends on knowledge about common causal
relationships in the natural world, on the degree of irrelevant information in the prompt, and on
the reasoning budget.

To this end, we extend the original RW17 prompts to abstract domains to test whether causal
reasoning is influenced by domain knowledge, and to overloaded prompts to assess whether
irrelevant information injected into the prompt degrades performance. A model reasoning robustly
would be expected to demonstrate the same performance across these manipulations. For both
manipulations, we adhere to the orginal prompt scaffolding from RW17 and test two prompting
strategies: single-shot numeric prompts as in RW17 and chain-of-thought (CoT) prompts where
LLMs are instructed to “think step by step” before providing their likelihood judgment .

Abstract Domain Besides the three original knowledge domains, we introduce an abstract
domain to test whether causal reasoning is influenced by domain knowledge. While still adhering
to the original prompt structure from RW17, we created three new abstract domains stripped of
any real-world context, where each variable is now a randomly generated 10 character string
assembled from a mix of letters, numbers, and symbols (e.g., “XJ3_!9Pq2#”). This allows us to
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test whether LLMs can apply their causal reasoning capabilities in a completely abstract setting
without any real-world knowledge. 3

Overloaded Prompts To test how easily distracted LLMs are by irrelevant information, we
created overloaded versions of both the original RW17 and Abstract prompts by appending
irrelevant information to reduce the signal-to-noise ratio in the prompt.

For details and examples of the abstract and overloaded prompts as well as single shot and
chain-of-thought instructions, we refer the reader to Section A.1.

3.2.3 Software Package
Our causal reasoning and human alignment benchmark is publicly available as part of a Python
package on GitHub. It can be used, for example, to benchmark additional LLMs or to algorith-
mically create custom prompts adhering to the RW17 scaffolding beyond the ones in this thesis.
Subsequently, all analyses and figures presented in this thesis in Chapter 4 can be reproduced
using the package as well as extended to additional models or prompt variants.

https://github.com/hmd101/causAIign

3Note that, while these abstract prompts are intentionally designed to have not been seen during training, we cannot
rule out that some LLMs may have been post-hoc trained on permutations that make them robust to nonsensical,
abstract variables.
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TL;DR (Results at a glance)

LLMs can follow causal rules, often more rigidly than people. Across tasks and
domains, most models apply the intended causal rules in a rule-like, repeatable way—more
deterministic than humans (i.e., they give the same pattern of answers across items and
downweight surface associations). A minority behave more probabilistically than humans,
leaning on context and associative cues.

Step-by-step prompting mainly boosts reliability; under noise it also improves reason-
ing quality. Chain-of-thought (asking for intermediate steps) makes models’ answers more
consistent (consistency = same pattern of answers across items) and, when prompts are
noisy or distracting, shifts behavior toward the intended causal rules (normative behavior =
follows the benchmark’s causal structure).

Changing the context domain doesn’t matter much; adding irrelevant text does. Swap-
ping real-world content for abstract placeholders leaves reasoning intact. But appending
irrelevant sentences makes models less consistent and more driven by associations. Chain-
of-thought recovers much of this loss.

Two behavioral regimes emerge. A deterministic, rule-following regime (low reliance
on associations) and a probabilistic, association-heavy regime. Frontier instruction-tuned
models cluster in the former; smaller/earlier models more often fall into the latter.

Scope and limits. Findings are behavioral and provide some insights as to how agents
reason: as LLMs are proprietary (weights, training data, undisclosed parameter counts), we
cannot make any claims about which features drive a certain behavior. Patterns should be
interpreted as consistent behavioral trends under our tasks, providing some insight as to
how they might be reasoning.

Roadmap
We organize results by the six questions in Chapter 1: (Q1) Domain differences via significance
tests; (Q2) Human–LLM alignment via Spearman correlation ρ ; (Q3) Normative reasoning via
causal Bayes net fitting metrics; (Q4) Reasoning consistency via task-level LOOCV R2; (Q5)
Cognitive strategies via causal Bayes net parameter signatures and collider induced reasoning sig-
natures explaining away (EA) and Markov violation (MV); (Q6) Genuine reasoning as measured
by robustness to content manipulations.

We benchmark over 20 LLMs from OpenAI, Anthropic, and Google in two prompting configura-
tions: single-shot prompts (numeric ) as in RW17, and chain-of-thought (CoT) prompts where
LLMs are instructed to “think step by step” before providing their likelihood judgment. The
dependent variable is the likelihood judgments (0–100) for a query variable being present given
a set observations that emerge in the collider structure, amounting to eleven distinct structural
causal reasoning tasks (see Figure 4.2 for collider graph visualizations of the 11 causal tasks).

In total, we evaluate 8 experimental conditions (2 prompting strategies× 4 content manipulations)
where the content manipulations diverge from the orignal RW17 prompts by either stripping it of
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real-world context and replacing it with abstract placeholders (Abstract), or by injecting irrelevant
information into the prompt (Overloaded), for both the original RW17 and Abstract prompts.

Naming conventions of LLMs are provided in Section 1 and a full list of models and some of their
publicly available features such as release data and context window size is given in Table A.1.1

4.1 Q1: Do Agents Reason Differently Across Domains?
We begin by testing whether our data supports the hypothesis that some agents exhibit domain-
dependent reasoning. More precisely, we test for each agent, whether their likelihood distributions
differ across domains, i.e. we have the following null and alternative hypothesis:

H0 : all domain distributions are identical vs. H1 : at least one domain differs.

We use a Kruskal–Wallis H-test and adjusted the resulting p-values via Benjamini–Hochberg
correction to control the false discovery rate, since we are in a multiple comparisons setting. The
results are given in Table 4.1.

Across domains within each agent, agents showed no statistically significant differences in their
likelihood distributions after a Benjamini–Hochberg correction indicating that the specific domain
does not systematically affect reasoning behavior. For this reason, we pool domains for all
subsequent analyses. For full results see Section B.1.

What about differences across agents within a domain? Conversely, across agents within
each domain, we see statistically significant differences after a multiple comparisons correction
for each experiment and prompt condition. To disentangle which agents drive the differences
within a domain we compared agents pairwise via Mann–Whitney U tests with Benjamini–
Hochberg FDR correction. This showed that only a few agents, namely gpt-3.5-turbo and some
of the gpt-5 variants drive these differences. For the purpose of this thesis, we won’t further
investigate this and instead pool all domains and focus on cross-domain agent performance. See
Section B.1 for full results. Figure B.2 shows the empirical cumulative distribution functions
(ECDFs) for an illustrative set of agents across RW17 domains.

1Note that none of the LLMs’ providers tested here disclose model architectures, number of parameters or information
about training data and post-training refinements limiting conclusions we can draw. When we refer to smaller
models, we go by the providers’ naming conventions. For example, OpenAI’s gpt-4.1-mini is a smaller variant
of gpt-4.1.
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Table 4.1: Kruskal–Wallis test results for all agents. k = number of domains, H = test statistic,
df = degrees of freedom, ntotal = sample size, pFDR-BH = p-value after Benjamini–Hochberg
correction across agents.

Agent k H df p-value ntotal pFDR-BH

claude-3-5-haiku-20241022 3 5.2021 2 0.0742 240 0.7420
claude-3-7-sonnet-20250219 3 0.6062 2 0.7385 240 0.9852
claude-3-haiku-20240307 3 1.5285 2 0.4657 240 0.9852
claude-3-sonnet-20240229 3 5.3585 2 0.0686 240 0.7420
claude-opus-4-1-20250805 3 2.0709 2 0.3551 232 0.9852
claude-opus-4-20250514 3 1.3777 2 0.5022 240 0.9852
claude-sonnet-4-20250514 3 0.1026 2 0.9500 240 0.9852
gemini-1.5-pro 3 1.0573 2 0.5894 2640 0.9852
gemini-2.5-flash 3 0.4403 2 0.8024 230 0.9852
gemini-2.5-flash-lite 3 1.5403 2 0.4630 240 0.9852
gemini-2.5-pro 3 0.4648 2 0.7926 2622 0.9852
gpt-3.5-turbo 3 10.6529 2 0.0049 240 0.1458
gpt-4 3 0.0749 2 0.9632 240 0.9852
gpt-4.1 3 0.1498 2 0.9279 240 0.9852
gpt-4.1-mini 3 0.4145 2 0.8128 240 0.9852
gpt-4o 3 0.8397 2 0.6572 2640 0.9852
gpt-5-mini-v_low-r_high 3 0.0334 2 0.9835 240 0.9852
gpt-5-mini-v_low-r_low 3 0.1805 2 0.9137 240 0.9852
gpt-5-mini-v_low-r_medium 3 0.4362 2 0.8040 240 0.9852
gpt-5-mini-v_low-r_minimal 3 3.4228 2 0.1806 240 0.9852
gpt-5-nano-v_low-r_high 3 1.2224 2 0.5427 240 0.9852
gpt-5-nano-v_low-r_low 3 0.1585 2 0.9238 240 0.9852
gpt-5-nano-v_low-r_medium 3 0.3626 2 0.8342 240 0.9852
gpt-5-nano-v_low-r_minimal 3 3.5389 2 0.1704 240 0.9852
gpt-5-v_low-r_low 3 0.0514 2 0.9746 240 0.9852
gpt-5-v_low-r_medium 3 0.3306 2 0.8476 240 0.9852
gpt-5-v_low-r_minimal 3 0.9507 2 0.6217 240 0.9852
humans 3 0.9405 2 0.6248 240 0.9852
o3 3 0.1413 2 0.9318 240 0.9852
o3-mini 3 0.0299 2 0.9852 240 0.9852
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4.2 Q2: Are Humans and LLMs Aligned?

TL;DR (Human–LLM Alignment (Q2))

State-of-the-art (SOTA) models are aligned with human reasoning. For smaller and older
models chain-of-thought prompting substantially improves human–LLM alignment up to
ceiling effects established by SOTA models. For those the impact of chain-of-thought is
minimal.

For each agent a and domain d, we quantify human–LLM alignment by computing Spearman’s
rank correlation coefficient ρa,d between human likelihood judgments and model predictions. Let
Ia,d denote the index set of all matched items for agent a in domain d, with hi and mi denoting
the human and model judgments for item i ∈ Ia,d. Then

ρa,d = corr
(
rank

(
{hi}i∈Ia,d

)
, rank

(
{mi}i∈Ia,d

))
.

See Section A.2 for details on confidence intervals.

Figure 4.1 shows human–LLM alignment measured via Spearman correlations (ρ) between
human and LLM judgments (95% CIs via 2000 bootstrap resamples), under both Numeric and
CoT prompting. The numeric prompting-strategy refers to a single likelihood estimate per task as
output, while CoT prompts elicit step-by-step reasoning before the final likelihood estimate. Full
per-model results are reported in Section B.2.

Alignment Increases Under Chain-of-Thought Prompting Figure 4.1 shows that across most
models, CoT prompting generally increases alignment. Numeric prompting yields correlations
in the range ρ = 0.31-0.85 (see Figure 4.1(a)), while CoT boosts the overall range to ρ = 0.54-
0.85.

Best-Performing Models Form a Saturated Cluster State-of-the-art models (e.g., gemini-2.5-pro,
claude-sonnet-4-20250514) reach the ceiling of observed human-LLM alignment, converg-
ing at ρ ≈ 0.84-0.85 under both prompt types. For these models, CoT adds little or no further
improvement.

Lighter and older models benefit most from CoT (see Figure 4.1(b)). For instance, gemini-2.5-flash-lite
shows a dramatic increase of ∆ρ = +0.503, from ρ = 0.342 to ρ = 0.845. Other compact
models show gains in the range of +0.15 to +0.45.

While absolute ρ values vary by domain (with weather typically easiest and economy harder), the
relative model rankings remain broadly stable. Section B.2 reports domain-wise breakdowns in
Figure B.1 and exact numbers with confidence intervals in Table B.15 and Table B.16.
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Figure 4.1: Human–LLM alignment: CoT boosts alignment. Each panel reports human-LLM align-
ment; per domain (shades of gray) and pooled domains (shade of blue) with 95% bootstrapped confidence
intervals sorted from highest to lowest ρ. Vertical dashed lines indicate the minimum and maximum pooled
ρ values across agents.

4.3 Q3: Do Humans and LLMs Reason Normatively?

Since the causal reasoning tasks all share the same underlying causal graph, i.e. a common-
effect/collider graph (C1 → E ← C2), we can assess their degree of normative reasoning
by fitting a causal Bayesian network (CBN) with a leaky noisy-OR parametrization (see also
Sections 2.1 and 2.2) to each agent’s domain-pooled likelihood judgments per prompt condition
and comparing the model fits. The better a causal Bayes net fits the predictions of an agent, the
more normative its reasoning is.

4.3.1 Operational Definition of Normativity

In the experiments by Rehder and Waldmann [1] there is no ground truth likelihood for the query
node given the observations, as the causal strengths and priors were not specified to subjects,
which doesn’t allow us to compute accuracy metrics against a ground truth. Instead, we define an
operational normativity rule based on how well a leaky noisy-OR causal Bayesian network fits
an agent’s judgments.
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4.3 Q3: Do Humans and LLMs Reason Normatively?

We say an agent is normative iff there exists a set of causal Bayes net parameters θ that describe
the agent’s judgments well, as measured by error metrics (RMSE, MAE, loss).

4.3.2 Fitting Causal Bayesian Networks to Likelihood Judgments
Model and Parameters For each experiment-prompt combination, we fit a causal Bayesian
network (CBN) to the likelihood judgments of all tasks and domains jointly per agent. We
represent collider structures using the leaky noisy-OR model. For binary causes C1, C2 ∈ {0, 1},
effect E, leak parameter b ∈ [0, 1], and causal strengths m1,m2 ∈ [0, 1], the conditional
probability of the effect is

Pr(E = 1 | C1, C2) = 1− (1− b) (1−m1C1) (1−m2C2). (4.1)

This formulation captures that each active cause independently increases the likelihood of the
effect, while the leak b accounts for background activations in the absence of any active causes.
Additionally, priors on the causes Pr(Ci = 1) = p(Ci) specify the baseline frequency of each
cause. To obtain an unconstrained optimization problem, parameters are mapped to the unit
interval via a sigmoid transform, e.g. p(Ci) = σ(θpCi), b = σ(θb), mi = σ(θmi).

Model Fitting For each task t and query node Q, the model gives a predictive probability
ŷt(θ) ∈ [0, 1] for Q = 1 given the task’s observed parent states. We normalize likelihood
judgments to [0, 1] and define residuals rt = ŷt(θ)− yt. We fit the causal Bayesian networks via
the following regression objective over tasks:

min
θ∈[0,1]d

∑
t∈T

ℓ(rt) s.t. θ ∈ [0, 1]d,

where ℓ(·) is either mean-squared error (MSE), ℓ(r) = 1
2r

2, or the Huber loss

ℓδ(r) =

{
1
2r

2, |r| ≤ δ,

δ
(
|r| − 1

2δ
)
, |r| > δ,

In our implementation, δ is fixed at δ = 1.0; we did not tune δ via validation. Empirically, we
tried both losses and often observed more stable training with Huber, consistent with occasional
heavy-tailed errors and bounded/extreme ratings (some tasks place substantial mass at the scale
endpoints).2

Optimization details. We fit three and four parameter CBNs by constrained gradient-based
optimization with R stochastic restarts (distinct random seeds) to mitigate local minima. Each
restart r yields (θ⋆r , Lr) with final loss Lr and derived per-restart metrics. Selection of the
representative (“best”) model per parameter-tying scheme is via lowest loss Lr but can be
changed to other metrics in our code base causAIign. We use either L-BFGS (default) with a

2See Section B.3 for empirical cumulative distributions of likelihood judgments, illustrating the prevalence of
endpoint clustering and heavy tails.
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Chapter 4 Analysis and Experimental Results

fixed maximum number of iterations or Adam with a fixed epoch budget; we do not employ early
stopping. Parameters are kept in-range via smooth re-parameterizations. We fit per agent and
prompt condition where per experiment all domains are pooled, i.e., treated as one.

Model selection: Which CBN describes an agent best? For each experiment and prompt-
category, we select a single CBN-winner per agent amongst the different parameter tying schemes
we fit. This happens after fitting all schemes with R restarts each and having selected the best
restart per scheme. The primary criterion is to maximize pooled LOOCV-R2 when available.3

4.3.3 Most Agents Are Described Well By A Causal Bayesian Network

Figure 4.2 visually displays causal Bayes net fits (dashed lines) for an illustrative subset of
agents across all 11 collider tasks (I-XI) in the RW17 independent causes domain with numeric
prompts.

C1 : 0 C2 : 1

E : 1

(a) (b) (c) MV iff |IV−V |>0+ϵ (d) EA iff V III > V I (e)

Figure 4.2: Agents vs. Causal Bayes Net Predictions across 11 collider induced inference tasks (I-XI)
(RW17, Numeric ) for an illustrative subset of agents. Some agents are well described by their
CBN model in dashed lines (e.g., o3), others not so much (e.g., gemini-2.5-flash-lite). Likelihood
judgments that query node has value 1 ∈ {0, 100} of agents’ predictions vs. their respective CBN
model predictions with bootstrapped 95% confidence intervals for agents ordered by reasoning category
Figures 4.2(b) to 4.2(e). Plot details: Graphs on the x-axis visualize the conditional probability of the
causal inference tasks (I-XI) where the nodes are colored according to: → query node that the question
is asked about; → observed ∈ {0, 1}; and → no information on. Panel descriptions: Figure 4.2(a)
shows the reference graph for task II. Figure 4.2(c) shows Markov violations (MV) for humans and
gemini-2.5-flash-lite, as |IV − V | > 0 + ϵ, visualized by non-horizontal lines, where ϵ is 0.05 in our
study. o3 shows no Markov violations and perfect independence of causes. Figure 4.2(d) brings about
explaining away (EA), iff V III > V I , visualized by a postitive slope. o3 displays perfect EA, whereas
gemini-2.5-flash-lite shows no EA and humans show weak EA. Experiment: Semantically meaningful
(RW17) content, numeric prompt.

3If all LOOCV-R2 values are missing/NaN in a group, we fall back to (in order): cross-validated R2 if present,
in-sample R2, then information criteria (prefer lower BIC, then lower AIC). Ties within a small epsilon on the
primary metric, here LOOCVR2, are broken by preferring: lower LOOCV-RMSE, then lower BIC, lower AIC,
lower training loss.
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4.3 Q3: Do Humans and LLMs Reason Normatively?

Chain-of-Thought Prompting Improves Normative Reasoning We evaluate causal Bayes net
fits via three metrics: Mean Absolute Error (MAE ∈ [0, 1]), Root Mean Squared Error (RMSE
∈ [0, 1]), R2 ∈ [− inf, 1], and and Huber loss (with δ = 1, ∈ [0, 05], see Section 4.3.2). Low
loss and low causal Bayes net errors (MAE, RMSE) indicate that there is a set of parameters
θ within the leaky noisy-OR parameterization that describes an agent’s reasoning behavior
well across all 11 collider tasks and can be said to reason normatively. Figures 4.3 to 4.5
show that chain-of-thought (CoT) prompting generally improves causal Bayes net fits com-
pared to numeric prompting across all three goodness of fit metrics. Most agents are well
described by a causal Bayes net (MAE ∈ [0.00004, 0.2887], MAEmedian = 0.0710, RMSE
∈ [0.00005, 0.32455], RMSEmedian = 0.0950, Huber loss l ∈ [0.0005, 0.0579], lmedian =
0.0124; and R2 ∈ [0.039, 0.995], with R2

median = 0.84).

Abstra
ct-Overloaded

Abstra
ct

RW17

RW17-Overloaded

Experiment

0.00

0.02

0.04

0.06

0.08

L
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s

Prompt
Numeric CoT

Summary
Median Mean

Summary
Median Mean

Figure 4.3: Chain-of-thought (CoT) improves causal Bayes net fits. Chain-of-thought (CoT) prompting
generally reduces loss compared to numeric prompting . Huber loss (∈ [0, 05], with δ = 1, see

Section 4.3.2).

Least normative LLMs LLMs with the highest loss and error metrics are primarily claude-3-haiku,
claude-3-opus, claude-3-sonnet, gpt-3.5-turbo, gpt-4.1-mini, and the smaller gpt-5
mini and nano variants, particularly under numeric prompting conditions where reasoning effort
is minimal. Conversely, gemini-2.5-pro, claude-opus-4-1, o3-mini, and o3 are among the
best fitting models with low error metrics and low loss across experiments and prompt conditions.
For a complete overview, see Section B.7 Tables B.19 to B.25 for full results, including the three
or four parameter tying scheme.
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Figure 4.4: CBN error metrics: RMSE Error is higher in overloaded versions, in particular when
stripped of semantically meaningful context (Abstract). Chain-of-thought (CoT) prompting generally
reduces RMSE compared to numeric prompting .
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Figure 4.5: CBN error metrics: MAE Error is higher in overloaded versions, in particular when stripped
of sematically meaningful context (Abstract). Chain-of-thought (CoT) prompting generally reduces
MAE compared to numeric prompting .
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4.4 Q4: Reasoning Consistency Across Experiment-Prompt
Conditions

TL;DR

Across all experiments, chain-of-thought (CoT) increases reasoning consistency (LOOCV
R2) and tightens dispersion, with largest gains under overloaded prompts; several SOTA
LLMs match or exceed the human consistency benchmark reaching ceiling performance.

Next, we ask how consistently an agent applies a reasoning strategy across related problems
within the collider family.

4.4.1 Reasoning Consistency
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Figure 4.6: Reasoning consistency mea-
sured by LOOCV R2 grouped by experi-
ment and prompt category. CoT helps im-
prove R2 scores most within overloaded
conditions (see left- and right most box
plot pair), mirroring them R2 closer the
plain experiments (RW17 and Abstract)
where CoT has a smaller but still positive
effect. Small numbers represent average
prompt length (in tokens) per experiment-
prompt-condition.

We define reasoning consistency as the task-level
LOOCV-R2 from a leaky noisy-OR CBN fit across the
11 tasks (fit on 10; predict the held-out task; average
over folds). This score is agnostic to explaining away
(EA) and Markov violation levels beyond the shared re-
sponses and captures how consistently an agent applies
a strategy across related problems.

Evaluating Cross-task Generalization We perform
leave-one-out cross-validation (LOOCV) over the col-
lider tasks: for each held-out task, fit on the remaining
tasks and predict the held-out with the winning model’s
configuration. Our LOOCV metrics are computed by
pooling predictions across folds rather than averaging
fold-wise metrics. Concretely, let ŷ(i) and y(i) be the pre-
diction and actual for fold i. We form concatenated vec-
tors ŷ = [ŷ(1), . . . , ŷ(K)] and y = [y(1), . . . , y(K)], then

compute RMSE =
√

1
K

∑
i(ŷ

(i) − y(i))2, MAE =
1
K

∑
i |ŷ(i) − y(i)|, and R2 = 1 − SSres/SStot with

SSres =
∑

i(ŷ
(i) − y(i))2 and SStot =

∑
i(y

(i) − ȳ)2,
where ȳ is the mean of all held-out actuals. Higher
pooled LOOCV-R2 indicates better cross-task general-
ization of a single CBN for that agent/condition.

The fitted parameters and LOOCV R2 for all agents are
reported in Section B.7.
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4.4.2 Chain-of-Thought improves reasoning consistency and helps
mitigate the impact of distracting information.

We report reasoning consistency via task-level leave-one-out cross-validated (LOOCV) R2 in
Figure 4.6 grouped by experiment and prompt condition. Chain-of-thought increases median
reasoning consistency relative to single-likelihood estimates (Numeric ) and narrows inter-
quartile ranges in all four settings, real-world domains (RW17), Abstract prompts, real-world
domains with overloaded prompts (RW17-Over), and abstract overloaded prompts (Abstract-
Over). Dispersion reduces most in the overloaded conditions, indicating that Chain-of-Thought
mitigates distraction effects induced by irrelevant content.

See Figure B.5 for agent breakdowns by experimental conditions.

Human benchmark. Humans (RW17, Numeric) achieve LOOCV-R2 = 0.937, which several
models match or exceed (see Figure B.5).

Implication for reasoning consistency. Chain-of-Thought generally improves reasoning consis-
tency—especially when prompts are overloaded—where it seems like stepwise reasoning with
chain-of-thought facilitates models to mediate the diluted signal-to-noise ratios in overloaded
conditions.

4.5 Q5: What Kind Of Cognitive Strategies Do Agents Use?

TL;DR (Cognitive Strategies in LLMs (Q5))

Most LLMs reason more deterministically than humans, with low leak and strong
causal strength parameters. Chain-of-Thought can increase determinism and explaining
away in smaller models, but has mixed effects overall. Markov compliance is common, but
a few LLMs—like humans—show associative biases.

4.5.1 Probabilistic vs. Deterministic Reasoning: Leak-Adjusted
Determinacy

To quantify the degree of deterministic versus probabilistic reasoning in a noisy-OR model, we
define the Leak-Adjusted Determinacy (LAD) ∈ [−1, 1] as

LADagent = magent − bagent (4.2)

where magent is the mean of the causal strength parameters of m1,2 and bagent is the leak parameter
of the fitted CBN for that agent. Positive values of LAD → 1 indicate that average causal
strength exceeds background leak, reflecting more deterministic reasoning, whereas negative
values indicate leak-dominated (more probabilistic) reasoning LAD→ −1.
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4.5.2 Most LLMs reason more deterministically than humans, some
reason more probabilistically than humans.

Figure 4.7 shows Leak-Adjusted Determinacy (LAD, see Equation (4.2)) per experiment and
prompt category by LLM release date. Higher Leak-Adjusted Determinacy (LAD) indicates
more deterministic reasoning while lower LAD indicates more probabilistic reasoning. Most
agents reason more deterministically than humans, indicated by more points above the pink
human threshold (RW17, Numeric: LAD≈0.45), with some agents (e.g., gemini-2.5-pro
and gemini-2.5-flash) reaching near-perfect determinism (LAD≈1.0). A handful of agents
reason more probabilistically than humans, some even with negative Leak-Adjusted Determinacy
values (scatters below 0) indicating they assume the effect is often present even in the absence
of causes (higher leak b and/or lower causal strengths m) than humans. Figure 4.7 also shows
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Figure 4.7: Leak-Adjusted Determinacy (LAD) per experiment and prompt category by LLM
release date. Higher Leak-Adjusted Determinacy (LAD) indicates more deterministic reasoning while
lower LAD indicates more probabilistic reasoning.

effects of experiment and prompt category on Leak-Adjusted Determinacy (LAD) indicated by
shape, size and color of scatter. This is what we will explore next in more detail in Section 4.6.
For a parameter breakdown per agent and experimental condition see Section B.7.

Chain-of-Thought has mixed effects on Leak-Adjusted Determinacy (LAD). Figure 4.10(b)
shows Leak-Adjusted Determinacy (LAD) for the RW17 experiment and the effects of Chain-of-
Thought. Chain-of-Thought tends to increase Leak-Adjusted Determinacy (LAD) relative to
single direct likelihood estimate prompts for some LLMs, smaller ones (e.g., gpt-5-nano-v
low-r minimal, gemini-2.5-flash-lite). Conversely, LLMs that already reason very
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deterministically (e.g., gemini-2.5-pro, o3-mini) show slightly decreased Leak-Adjusted
Determinacy (LAD) levels under Chain-of-Thought . Again, this figure illustrates, that most
LLMs reason more deterministically than humans (more points to the right of the pink horizontal
human benchmark line), with some exceptions (e.g., gpt-3.5-turbo, claude-3-sonnet).

4.5.3 Qualitative Measures of Reasoning: Explaining Away and Markov
Compliance

In collider structures, two key qualitative signatures emerge that have been widely studied in
humans: they are (a) explaining away (EA) and (b) Markov violation/compliance (MV/MC). It
has been repeatedly shown that humans often fail to exhibit these signatures robustly [1], which
is why we ask whether LLMs exhibit these signatures more robustly than humans. For this, we
define qualitative signatures for explaining away (EA) and Markov violation (MV) based on the
agents’ raw likelihood judgments (not their CBN predictions).4

We evaluate agents against qualitative collider norms and a model-based consistency check.

Explaining Away (EA) Explaining away in a collider graph occurs when evidence for one cause
reduces the belief in the alternative cause (see Section 2.3.2), i.e.

EA iff Pr(C1=1 | E=1)− Pr(C1=1 | E=1, C2=1) > 0. (4.3)

Visually explaining away is represented as a positive slope in Figure 4.2(d).

Markov Violation and Compliance (MV/MC) A Markov violation occurs when the presence or
absence of one cause affects the belief in another cause, violating the independence assumption in
a collider structure (see Section 2.3.3). Formally, we define the Markov violation signature as

MC iff MV = |Pr(C1=1 | C2=1)− Pr(C1=1 | C2=0)| ≈ 0.

Markov compliance (MC), meaning no violation occurs MV ≈ 0, is visually represented as a flat
line in Figure 4.2(c).

4.5.4 Explaining Away and Markov Compliance in LLMs
Figure 4.9 shows Explaining Away (EA) and Markov Violation (MV) levels for three illustrative
agents in the middle and right panel respectively across all experiments and prompt categories.
For an agent level breakdown per experiment see Figure 4.8(a) and Figure B.3 for explaining
away and Figure 4.8(b) and Figure B.4 for Markov violations.

High explaining away levels occur when the presence of one cause explains away the presence of
an alternative cause drastically reducing the likelihood of the alternative cause (represented by
scatters clustered on the right side in Figure 4.8(a) and in the center panels of Figure 4.9).

4To our knowledge, there are no canonical numeric standards for EA or MV magnitudes; norms in the causal
literature are typically qualitative (EA should be positive; MV should be practically zero).
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Markov compliance (MC) occurs when the presence of one cause does not affect the likelihood of
another cause (represented by scatters clustered around 0 in the right panels).

Most LLMs exhibit substantially stronger explaining away than humans. Figure 4.8(a)
displays the explaining away levels for the RW17 experiment and shows things: (1) most
LLMs exhibit explaining away (scatters in the gray shaded area right of 0); (2) most LLMs
exhibit stronger explaining away compared to humans (scatters to the right of pink horizon-
tal line, RW17, Numeric: EA≈0.099); and (3) Chain-of-Thought tends to increase ex-
plaining away levels relative to single direct likelihood estimate prompts for some LLMs.
Those effects are most pronounced for smaller models (e.g., gpt-5-nano-v low-r minimal,
gemini-2.5-flash-lite and gpt-5-mini-v low-r minimal). See Figure B.3 for an agent
level breakdown for the remaining three experiments.

Most LLMs exhibit Markov compliance, while some show associative biases like humans.
Figure 4.8(b) displays the Markov violation levels (when scatters are away from 0) for the RW17
experiment and shows things: (1) most LLMs exhibit Markov compliance (scatters around 0);
(2) some LLMs exhibit associative biases like humans or greater (scatters to the right of pink
horizontal line), and (3) Chain-of-Thought tends to decrease Markov violation levels (pushes
scatters closer to 0) relative to single direct likelihood estimate prompts for some LLMs.
Those effects are most pronounced for smaller models (e.g., gpt-5-nano-v low-r minimal,
gemini-2.5-flash-lite and gpt-5-mini-v low-r minimal). See Figure B.4 for an agent
level breakdown for the remaining three experiments.
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(a) Explaining Away (EA): Most agents exceed the human baseline (EA
> 0.099), and CoT effects are mixed. Under CoT, all agents display some
level of explaining away (EA>0). Some agents increase EA levels drastically,
namely those with lower EA under Numeric, while others slightly decrease,
mostly those with higher EA under Numeric.
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(b) Markov Violation (MV): Most agents respect cause independence (MV
near 0), while humans reason associatively (MV > 0). CoT pushes some
agents closer to 0, namely mostly those with higher |MV | under Numeric.

Figure 4.8: Impacts of CoT and comparison to human baseline across explaining away and Markov
compliance levels for RW17. Agents that exceed human baselines (higher EA, lower |MV|) in the Numeric
prompt-condition mostly belong to reasoning models are for example gemini-2.5-pro, the reasoning model
o3. Smaller models (e.g., gpt-5-nano and -mini and gemini-2.5-flash-lite) seem to benefit most from CoT
prompting.
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4.6 Q6: Do LLMs Reason Robustly Under Content
Manipulations?

TL;DR (Robustness to Content and Prompting Manipulations (Q6))

CoT prompting enhances reasoning robustness, especially under noisy or abstract
conditions. Most LLMs maintain stable causal structure across a subset of content manipu-
lations, but overloaded prompts shift towards more probabilistic (increased leak, reduced
causal strength). Gemini-2.5-pro is most robust and deterministic across all conditions,
while smaller models benefit most from CoT (e.g., Gemini-2.5-flash-lite).

4.6.1 Robustness Across Prompt and Content Manipulations

We finally ask how robustly LLMs reason across content and prompt manipulations across all
metrics (determinism, explaining away, Markov compliance, and reasoning consistency) and in
comparison to the human baseline (RW17-Numeric). To refresh the reader’s mind, we briefly
recap the experimental manipulations and evaluation metrics and provide a guide to how to
interpret the scatter plots in(Figure 4.9) in Section 4.6.1 that follow and contain the robustness
analysis at a glance; otherwise skip to Section 4.6.2 for the main findings.

Experimental Manipulations (Recap) We assess robustness across two orthogonal content
manipulations: (A) Content reduction — rendering inputs semantically abstract (RW17 →
Abstract); (B) Noise injection/Overloading — diluting signal with irrelevant information (RW17
→ RW17-Over, and Abstract→ Abstract-Over). We also evaluate the effect of prompting strategy
(Numeric vs. CoT) on reasoning robustness.

Evaluation Metrics (Recap) We assess: (i) normative reasoning via a set of causal Bayes net
parameters that describes an agent’s behavior well (low error & loss); (ii) Reasoning consistency
via LOOCV R2 (Figure 4.6); (iii) probabilistic vs. deterministic reasoning via Leak-Adjusted
Determinacy (LAD, see Equation (4.2)); and (v) common-effect/collider graph specific Explaining
away (EA) and Markov violation (MV) using raw normalized judgments (Figures B.3 and B.4).

A guide to interpreting Figure 4.9: Robustness across all metrics at a glance

Figure 4.9 summarizes the remaining metrics (ii-iv) for each agent’s performance across content
and prompting manipulations. Each agent’s scatter plot (e.g., Figure 4.9(a)) visualizes:

• Y-axis: probabilistic vs. deterministic reasoning via Leak-Adjusted Determinacy (LAD)
(LAD = m̄− b), where higher values (top) indicate more deterministic reasoning (high
causal strength m, low leakage b) and lower values (bottom) indicate more probabilistic
reasoning (low m, high b);
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• X-axes: R2, EA, and MV respectively from left to right, higher values (to the right) indicate
higher reasoning consistency and higher explaining away, while values away from zero
indicate Markov violation and conversely, values near zero indicate Markov compliance.

• Symbols: Experimental conditions ( for RW17, for Abstract), enlarged for overloaded
variants;

• Colors: Prompt types (Numeric: , CoT: ).

Clusters indicate robustness across the respective conditions.

4.6.2 Findings

Gemini-2.5-flash and pro are most deterministic and robust across metrics and condi-
tions. Figures B.8(c) and 4.9(a) show Gemini-2.5-flash and pro, revealing clusters for all 8
experimental manipulations in the top right for R2 and EA, and MV near 0 with high LAD,
indicating high robustness as well as strong deterministic reasoning, and explaining-away and
Markov compliance. Conversely, Gemini-2.5-flash-lite (Figure 4.9(b)) shows clear effects of
prompt-category (Numeric vs. chain-of-thought ) for R2 and EA, indicated by the the spread
of triangles across the x-axis. In particular, chain-of-thought ( ) leads to higher R2 and EA
levels, while MV levels are similar across prompt-categories.

Content Effects (RW17 vs. Abstract) are less systematic than prompting effects (Numeric
vs. CoT) for probabilistic vs deterministic reasoning. Clear separation along the y-axis
indicates a shift from probabilistic to deterministic reasoning and is observed in a number of agents
such as gpt-5-mini-v-low-r-minimal (Figure B.10(d)), gpt-5-nano-v-l-r-minimal and
gpt-3.5-turbo in Figure 4.9(c). It seems that the prompt-type (Numeric vs. chain-of-
thought ) has a greater effect on the level of deterministic reasoning (LAD levels) than content
manipulations (RW17 vs. Abstract ). This is revealed by the fact that the clustering along
the y-axis is more prevalent for darkblue (CoT) vs. lighter blue (Numeric, ) indicating that
chain-of-thought prompting has a greater effect on shifting reasoning in the probabilistic vs
deterministic regime (LAD levels) but effects remain mixed depending on the agent.

Summary of Findings Gemini-2.5-pro and flash and exhibit the most consistent and nor-
mative reasoning across conditions indicated by a single cluster in Figures B.8(c) and 4.9(a).
Other models vary: some benefit from chain-of-thought (e.g., for reasoning consistency and
explaining away), while content manipulations exert less consistent effects. Where agents do
not already perform at ceiling, chain-of-thought prompting improves reasoning consistency and
explaining away for most agents, with minimal cost to Markov violations and some improvements.
These findings suggest that, while some general trends seem to emerge, meaningful insights are
best drawn at the agent level, since effects vary widely across models and within most models
and the interpretation of results depends on the specific use case or interest in how a given LLM
is desired to behave relative to humans under experimental manipulations across these metrics.
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(c) GPT-3.5-turbo shows great prompt-category effects (Numeric vs. CoT ) for LAD, where leads to higher
levels, while MV levels are greater than 0 across all conditions indicating associative reasoning.

Figure 4.9: Leak-Adjusted Determinacy (LAD) levels LAD = m̄− b vs. R2 EA, and MV levels vary
widely across agents and experiment / prompt category manipulations. The figure illustrates: (1) how
consistent the agent is under different prompts and content manipulations —- closer scatter clustering
signals greater robustness to content manipulations and prompt variations; (2) how deterministic an agent
is – more scatters in the top (LAD→ 1) indicate higher determinism, namely high causal strength m and
low b consistent with Cheng [41] causal power theory. Conversely, lower LAD→ −1 values indicate more
probabilistic reasoning. For the LOOCV R2 panels, points closer to the right indicate higher reasoning
consistency. For the EA panels, points closer to the top indicate higher EA levels, i.e., the presence of
one cause explains away the presence of an alternative cause to have brought about the effect. For the
MV panels, points closer to 0 indicate higher Markov compliance (respecting independence of causes).
Additionally, for MV, points above 0 indicate positive MV (overestimating the effect of the cause on the
effect) and points below 0 indicate associative reasoning, i.e., that the presence of once cause increases
another one. 35
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Figure 4.10: Impacts of CoT and comparison to human baseline across Collider and CBN-induced
metrics for RW17. The top raw shows metrics based on normalized raw likelihood judgments (EA, MV),
the bottom row shows CBN-based metrics (LOOCV R2, Leak-Adjusted Determinacy LAD). Agents
that exceed human baselines (higher EA, lower |MV|, higher R2) and higher (LAD) in the Numeric
prompt-condition mostly belong to reasoning models are for example gemini-2.5-pro, the reasoning model
o3. Smaller models (e.g., gpt-5-nano and -mini and gemini-2.5-flash-lite) seem to benefit most from CoT
prompting.
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Additional agent results highlighting chain-of-thought impact and humans baseline comparison
can be found in Figures B.3 to B.5 Section B.4 in Appendix. For a full comparison across experi-
mental conditons additonal scatter plots per agents can be found in Section B.5 in Figures B.6
to B.12. Parameter shifts by experiment (e.g., RW17→ Abstract) are plotted in Section B.6; hori-
zontal lines indicate robustness. For prompt-type transitions (Numeric→ chain-of-thought) can
be found in Section B.6.1 in Figures B.16 to B.19 and B.21 to B.23 and Tables B.17 and B.18.
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5.1 Summary
Large language models are increasingly integrated into decision-making workflows in high-
stakes scenarios, such as in medical, judicial and financial domains. This necessitates thorough
assessment of the causal reasoning capabilities of such models, both to understand the limits of
their applicability and to prevent associative reasoning fallacies.

In this work, we introduced a causal reasoning benchmark with human comparison data and
a cognitively-grounded diagnostic framework for evaluating causal reasoning in LLMs. Our
cognitive lens—fitting simple causal Bayesian networks to model causal judgments—provides a
compact way to understand to what degree LLMs are able to reason causally rather than merely
associatively and how the prompt manipulations shape that trade-off. Our framework yields
interpretable parameters (leak b, causal strengths m1,m2, priors p(Ci)) that distinguish reasoning
strategies along a spectrum from deterministic rule-following to probabilistic association-driven
inference.

By analyzing responses from 20+ LLMs and humans on eleven matched collider inference
tasks, we addressed research questions about domain effects, human-LLM alignment, normative
reasoning, reasoning consistency, cognitive strategies, and robustness to content and prompting
manipulations. Overall, we find that most frontier LLMs reason more normatively than humans,
also exhibiting stronger explaining away and better Markov compliance, while a minority show
more probabilistic patterns than humans.

Specifically, we find that modern LLMs can implement causal computations that are stable across
domains (Q1) and align more closely with humans when prompted with chain-of-thought (Q2).
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Fitting simple, interpretable causal Bayesian networks captures most models’ behavior well
(Q3), while chain-of-thought increases reasoning consistency (Q4). Parameter signatures in
causal Bayes nets reveal two regimes (Q5): a normative/deterministic regime (low leak, high
causal strengths, symmetric fits) and an associative/hedging regime (higher leak, weaker causal
strengths, asymmetric fits). The key robustness result of our work (Q6) is that content abstraction
preserves consistency, while adding irrelevant information generally hurts reasoning performance.
Chain-of-thought is broadly beneficial and is especially helpful when irrelevant information is
included in the prompt, where it improves both normativity and consistency.

The combination of stable causal Bayes net fits, abstraction-agnostic reasoning, and the resilience
to prompt noise provides evidence that Gemini-2.5-pro and Gemini-2.5-flash perform
genuine causal computations on our common-effect causal inference tasks rather than surface
pattern matching. Other LLMs tested showing slightly loser clusters in Figures B.6 to B.12
and 4.9, suggest to have at least some degree of genuine causal computations on our common-
effect causal inference tasks. However, the degradation under irrelevant information highlights a
robustness gap that must be part of any future benchmark in causal reasoning and our findings
suggest that chain-of-thought prompting helps reverse this trend for many models.

5.2 Limitations
Perhaps the biggest limitation of our work is the sole focus on the common-effect graph, however
this is for good reason as collider structures give rise to interesting causal reasoning patterns such
as explaining away and it has been well established in decades of research that humans reveal
systematic biases in precisely these structures. An important question we answered in this thesis
is whether LLMs exhibit similar biases and the answer is mostly no. Alternative graph topologies
such as chains, forks, and more complex graphs remain subject to future research.

While we do provide human baseline data compiled from Rehder and Waldmann [1] as part of
our causal reasoning benchmark, we do not have human responses to either abstract prompts or
prompts with irrelevant information added. This would be an exciting and relatively straightfor-
ward extension of this work.

Finally, the architecture, activations, training datasets and any (post-)training adjustments are
kept proprietary by OpenAI, Anthropic and Google whose LLMs we consider. Therefore, it is
challenging to disentangle confounders like whether some models have been explicitly trained on
abstract reasoning tasks or permutations facilitating generalization to abstract content.

5.3 Future Work
Our results and the limitations above suggest concrete next steps for future work. Our causal
benchmark with the associated Python package can be applied to benchmark LLMs on additional
causal reasoning tasks for which human data exists. For example on other graph topologies such
as chains and forks. Given that chain-of-thought significantly improves smaller and older models
and helps particularly in the setting where the prompt is overloaded with irrelevant content, it
would be highly-interesting to investigate the activations of an open-source model during the
forward pass with and without chain-of-thought. Finally, evaluating human reasoning more
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closely in settings that mirror more closely what the weaknesses of current frontier LLMs are, for
example the case of overloaded prompts, could reveal interesting differences between them and
further inform when LLMs are useful to augment human decision-making.
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A.1 Overloaded / Noisy Prompt Generation and Prompt
Variants

A.1.1 Overloaded and Abstract Prompts
This section documents how we construct overloaded variants of the RW17 prompts and how
these compare to domain-agnostic abstract prompts.

RW17 baseline scaffolding (recap) The original RW17 prompts follow a fixed scaffold: (1)
a short domain introduction, (2) detailed descriptions for the three variables C1, C2, and E
(e.g., “Interest rates are ...”), (3) a causal mechanism paragraph introduced by “Here are the
causal relationships:” with two edge explanations (one for C1 → E, one for C2 → E), and
(4) an inference task instruction with counterbalancing. We preserve this scaffold exactly in all
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overloaded variants; only additional material is appended at specific attachment points described
below.

Overloaded RW17 prompts

We generate overloaded variants by injecting irrelevant content to a clone of the base RW17
domain and append either cross-domain content (e.g content from the sociology domain to the
weather domain) or neutral filler (from the lorem ipsum vocabulary1). Clones are named to reflect
the manipulation and source domain, e.g., econ_ovl_d=soc (economy with sociology content
appended to detailed fields), or weath_ovl_e=econ. Control variants use length-matched neutral
filler and are suffixed with =ctl (e.g., soc_ovl_de=ctl).

Attachment points and variants CAUSAIIGN supports three injection points to inject irrelevant
text and also supports tailored content.

• d (detailed fields only): Appends content to the variable descriptions for C1, C2, and
E. Concretely, this text appears in the block before the sentence “Here are the causal
relationships:” and after the baseline RW17 description sentences for each variable. The
causal mechanism sentences are left unchanged.

• e (edge explanations only): Appends content to the causal mechanism sentences that follow
“Here are the causal relationships:”. Tthe verbalizer, which reads from C1,2 → E, picks
up the added text and appends it to the causal mechanism native to that domain. Variable
descriptions remain unchanged.

• de (both detailed and edge explanations): Applies both of the above simultaneously:
variable descriptions (d) and edge explanations (e) receive appended content.

In this work, we only report results for the e condition, as we have the most LLM data for this
condition, referred to as RW17-Over in the main text.

Content vs. length controls For each of d/e/de we provide control clones (=ctl) that append
neutral filler instead of cross-domain content. Filler is domain-agnostic and generated from
a lorem-ipsum style vocabulary to match the requested word length. It is sentence-cased and
ends with a period to minimally disturb surface formatting. Thus, =ctl variants control for
increased text length without introducing extraneous content. This allows clean separation of
distraction-by-content from mere text-length effects.

1https://www.lipsum.com
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Example: de control (econ_ovl_de=ctl)

This example shows a de-control prompt in the Economy domain. It preserves the baseline RW17
scaffold and appends neutral, length-matched filler (in italics) to both variable descriptions (d)
and edge explanations (e). Only the italized text is part of the actual prompt. The bold text is
there to help the reader understand the structure of the prompt. Domain introduction Economists
seek to describe and predict the regular patterns of economic fluctuation. To do this, they study
some important variables or attributes of economies. They also study how these attributes are
responsible for producing or causing one another.

Variable descriptions (with d distractions) X (Interest rates). Interest rates are the rates banks
charge to loan money. Lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua ut.

Y (Trade deficit). A country’s trade deficit is the difference between the value of the goods that a
country imports and the value of the goods that a country exports. Lorem ipsum dolor sit amet
consectetur adipiscing elit sed do eiusmod tempor incididunt ut labore et dolore magna aliqua
ut.

Z (Retirement savings). Retirement savings is the money people save for their retirement. Lorem
ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua ut.

Causal relationships (with e distractions) Here are the causal relationships:

• Low interest rates causes high retirement savings. Low interest rates stimulate economic
growth, leading to greater prosperity overall, and allowing more money to be saved for
retirement in particular. Lorem ipsum dolor sit amet consectetur adipiscing elit sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua ut enim ad minim veniam quis
nostrud exercitation ullamco laboris nisi.

• Small trade deficits causes high retirement savings. When the economy is good, people
can cover their basic expenses and so have enough money left over to contribute to their
retirement accounts. Lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua ut enim ad minim veniam quis nostrud
exercitation ullamco laboris nisi.

Observations You are currently observing: high retirement savings and small trade deficits.

Task instruction Your task is to estimate how likely it is that low interest rates are present
on a scale from 0 to 100, given the observations and causal relationships described. 0 means
completely unlikely and 100 means completely likely. Note that each of the causes can bring
about the effect independently. Please provide your answer as a single number between 0 and
100, where 0 means very unlikely and 100 means very likely. Do not include any explanations or
additional text.
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Example: de cross-domain (weath_ovl_de=econ), numeric, collider

This example shows a de cross-domain prompt in the Weather domain with Economy content
appended to variable descriptions (d) and edge explanations (e) serving as irrelevant distractions.
It preserves the baseline RW17 scaffold and appends cross-domain, length-matched content
(marked with ) to both variable descriptions (d) and edge explanations (e). Only the italicized
text is part of the actual prompt. The bold text is there to help the reader understand the structure
of the prompt.

Domain introduction Meteorologists seek to describe and predict the regular patterns that
govern weather systems. To do this, they study some important variables or attributes of weather
systems. They also study how these attributes are responsible for producing or causing one
another.

Variable descriptions (with d distractions) X (Ozone). Ozone is a gaseous allotrope of oxygen
(O3) and is formed by exposure to UV radiation.
Some systems have high ozone levels. Others have normal ozone levels.
Interest rates are the rates banks charge to loan money.

Y (Air pressure). Air pressure is force exerted due to concentrations of air molecules.
Some systems have high air pressure. Others have normal air pressure.
A country’s trade deficit is the difference between the value of the goods that a country imports
and the value of the goods that a country exports.

Z (Humidity). Humidity is the degree to which the atmosphere contains water molecules.
Some systems have low humidity. Others have normal humidity.
Retirement savings is the money people save for their retirement.

Causal relationships (with e distractions) Here are the causal relationships:

• High ozone levels causes low humidity. Ozone attracts extra oxygen atoms from water
molecules, creating a concentration of water vapor in that region. The good economic
times produced by the low interest rates leads to greater confidence and less worry about
the future, so people are less concerned about retirement.

• High air pressure causes low humidity. When air pressure is high, water vapor condenses
into liquid water (rain), and the atmosphere is left with little moisture. The loss of local
manufacturing jobs means that there are people out of work, and contributions to retirement
accounts decreases.

Observations You are currently observing: normal humidity and high air pressure.

Task instruction Your task is to estimate how likely it is that high ozone levels are present
on a scale from 0 to 100, given the observations and causal relationships described. 0 means
completely unlikely and 100 means completely likely. Note that each of the causes can bring
about the effect independently. Please provide your answer as a single number between 0 and
100, where 0 means very unlikely and 100 means very likely. Do not include any explanations or
additional text.
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A.1.2 Abstract prompts (contrast)
As a complementary control, we generate abstract prompts that drop realistic RW17 domain
semantics entirely while preserving causal structure and response formatting used in the RW11
variants.

Example: abstract prompt (numeric, collider; id 62)

Domain introduction In abstract reasoning studies, researchers examine relationships between
symbolic variables u8jzPde0Ig, xLd6GncfBA, and epfJBd0Kh8.

Variable descriptions Some systems have high u8jzPde0Ig. Others have low u8jzPde0Ig.
Some systems have weak xLd6GncfBA. Others have strong xLd6GncfBA. Some systems have
weak epfJBd0Kh8. Others have powerful epfJBd0Kh8.

Causal relationships Here are the causal relationships:

• High u8jzPde0Ig causes weak epfJBd0Kh8.

• Weak xLd6GncfBA causes weak epfJBd0Kh8.

Observations You are currently observing: weak epfJBd0Kh8 and high u8jzPde0Ig.

Task instruction Your task is to estimate how likely it is that weak xLd6GncfBA is present on
a scale from 0 to 100, given the observations and causal relationships described. 0 means
completely unlikely and 100 means completely likely. Note that each of the causes can bring
about the effect independently. Please provide your answer as a single number between 0 and
100, where 0 means very unlikely and 100 means very likely. Do not include any explanations or
additional text.

Example: Abstract Overloaded prompt (DE)

This example shows a de overloaded prompt in the abstract setting which is the one reported
in the main text and referred to as Abstract-Over. It preserves the abstract scaffold and appends
neutral, length-matched filler to both variable descriptions (d) and edge explanations (e). Only
the italicized text is part of the actual prompt.2

Domain introduction In abstract reasoning studies, researchers examine relationships between
symbolic variables u8jzPde0Ig, xLd6GncfBA, and epfJBd0Kh8.

Variable descriptions (with d distractions) X (u8jzPde0Ig). Some systems have high u8jzPde0Ig.
Others have low u8jzPde0Ig. Lorem ipsum dolor sit amet consectetur adipiscing elit sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.

Y (xLd6GncfBA). Some systems have weak xLd6GncfBA. Others have strong xLd6GncfBA. Lorem
ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua.

2The bold text is there to help the reader understand the structure of the prompt. Only the italicized text is part of the
actual prompt.
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Z (epfJBd0Kh8). Some systems have weak epfJBd0Kh8. Others have powerful epfJBd0Kh8.
Lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua.

Causal relationships (with e distractions) Here are the causal relationships:

• High u8jzPde0Ig causes weak epfJBd0Kh8. Lorem ipsum dolor sit amet consectetur
adipiscing elit sed do eiusmod tempor incididunt ut labore et dolore magna aliqua ut enim
ad minim veniam.

• Weak xLd6GncfBA causes weak epfJBd0Kh8. Lorem ipsum dolor sit amet consectetur
adipiscing elit sed do eiusmod tempor incididunt ut labore et dolore magna aliqua ut enim
ad minim veniam.

Observations You are currently observing: weak epfJBd0Kh8 and high u8jzPde0Ig.

Task instruction Your task is to estimate how likely it is that weak xLd6GncfBA is present on
a scale from 0 to 100, given the observations and causal relationships described. 0 means
completely unlikely and 100 means completely likely. Note that each of the causes can bring
about the effect independently. Please provide your answer as a single number between 0 and
100, where 0 means very unlikely and 100 means very likely. Do not include any explanations or
additional text.

A.1.3 Prompt-categories (LLM-Output Instructions Chain-of-Thought vs.
numeric)

We use two prompt-categories that differ only in the required output format and whether the
model should explain its reasoning. All categories keep the same causal scaffold and observations;
only the output instruction changes.

Zero-shot Answer (numeric ) Output: a single number between 0 and 100 indicating the
likelihood. No explanation or extra text is allowed.

Example instruction Your task is to estimate how likely it is that strong B is present on a scale
from 0 to 100, given the observations and causal relationships described. 0 means completely
unlikely and 100 means completely likely. Please provide your answer as a single number
between 0 and 100, where 0 means very unlikely and 100 means very likely. Do not include any
explanations or additional text.

CoT (Chain-of-Thought ) Output: step-by-step explanation in an XML format followed by
the likelihood judgment.

Example instruction Your task is to estimate how likely it is that weak h#Bel31iEl is present on
a scale from 0 to 100, given the observations and causal relationships described. 0 means com-
pletely unlikely and 100 means completely likely. Note that each of the causes can bring about the
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effect independently. First, think through this step by step and explain your reasoning. Then pro-
vide your likelihood estimate. Return your response as raw text in one single line using this exact
XML format: <response><explanation>YOUR_STEP_BY_STEP_REASONING</explanation>
<likelihood>YOUR_NUMERIC_RESPONSE_HERE</likelihood></response>.
Replace YOUR_STEP_BY_STEP_REASONING with your concise reasoning process.
Replace YOUR_NUMERIC_RESPONSE_HERE with your likelihood estimate between 0 (very
unlikely) and 100 (very likely). DO NOT include any other information, explanation, or for-
matting outside the XML. DO NOT use Markdown, code blocks, quotation marks, or special
characters.

A.2 Human-LLM Alignment Details
For each agent a and domain d, we quantify human–LLM alignment by computing Spearman’s
rank correlation coefficient ρa,d between human likelihood judgments and model predictions.

To assess the robustness of these correlations, we estimate 95% confidence intervals via non-
parametric bootstrapping with B = 2000 resamples. Specifically, for each bootstrap replicate
b = 1, . . . , B, we draw a resampled index set I(b)a,d of size |Ia,d| by sampling with replacement
from Ia,d, and recompute

ρ
(b)
a,d = corr

(
rank

(
{hi}i∈I(b)

a,d

)
, rank

(
{mi}i∈I(b)

a,d

))
.

The percentile method then yields

CI95%(ρa,d) =
[
quantile0.025

(
{ρ(b)a,d}Bb=1

)
, quantile0.975

(
{ρ(b)a,d}Bb=1

)]
.

In addition to domain-specific alignment for RW17, we report pooled alignment across all
domains for each agent. Let D denote the set of domains; the pooled index set is

Ia,pool =
⋃
d∈D
Ia,d,

with ρa,pool and its confidence interval computed in the same manner.

A.3 Derivation of Noisy Or Model’s Predicted Probability for
each Task I-XI

A.3.1 Notation
• BR: Bayes rule

• PR: Product rule

• M: Marginalization
p(C1) =

∑
C2

p(C1, C2)
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• IA: Independence assumption

p(C1, C2) = p(C1)p(C2)

• MD: model definition (Noisy Or)

p(E = 1|C1, C2) = 1− (1− b)(1−mC1
1 )(1−mC2

2 )

A.3.2 Predictive Inference

Task I:

p(E = 1|C1 = 0, C2 = 0)

p(E = 1|C1 = 0, C2 = 0)
MD
= b (A.1)

Task II:

p(E = 1|C1 = 0, C2 = 1)

p(E = 1|C1 = 0, C2 = 1)
MD
= 1− (1− b)(1−m2) (A.2)

Task III:

p(E = 1|C1 = 0, C2 = 1)

p(E = 1|C1 = 1, C2 = 1)
MD
= 1− (1− b)(1−m1)(1−m2) (A.3)

A.3.3 Independence of Causes

Task IV:

p(C1 = 1|C2 = 1)

p(C1 = 1|C2 = 1)
BR
=

p(C1 = 1, C2 = 1)

p(C2 = 1)
(A.4)

IA
=

p(C1 = 1)p(C2 = 1)

p(C2 = 1)
(A.5)

MD
= p(C1) (A.6)
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A.3 Derivation of Noisy Or Model’s Predicted Probability for each Task I-XI

Task V:

p(C1 = 1|C2 = 0)

p(C1 = 1|C2 = 0)
BR
=

p(C1 = 1, C2 = 0)

p(C2 = 0)
(A.7)

IA
=

p(C1 = 1)(1 − p(C2))

1 − p(C2)
(A.8)

MD
= p(C1) (A.9)

A.3.4 Diagnostic Inference – Effect Present

Task VI:
p(C1 = 1|E = 1, C2 = 1)

p(C1 = 1|E = 1, C2 = 1)
BR
=

p(E = 1|C1 = 1, C2 = 1)p(C1 = 1 | C2 = 1)

p(E = 1 | C2 = 1)
(A.10)

M+IA
=

p(E = 1|C1 = 1, C2 = 1)p(C1 = 1)

p(E = 1|C1 = 1, C2 = 1)p(C1 = 1) + p(E = 1|C1 = 0, C2 = 1)p(C1 = 0)
(A.11)

MD
=

[1 − (1 − b)(1 − m1)(1 − m2)]p(C1)

[1 − (1 − b)(1 − m1)(1 − m2)]p(C1) + [1 − (1 − b)(1 − m2)]p(C1 = 0)
(A.12)

Task VII:
p(C1 = 1|E = 1)

p(C1 = 1|E = 1)
BR
=

p(E = 1|C1 = 1)p(C1 = 1)

p(E = 1)
(A.13)

M+IA
=

p(C1 = 1)
∑

C2
p(E = 1|C1 = 1, C2)p(C2)∑

C1

∑
C2

p(E = 1|C1, C2)p(C1)p(C2)
(A.14)

MD
=

p(C1)[p(C2)(1 − (1 − b)(1 − m1)(1 − m2)) + (1 − p(C2))(1 − (1 − b)(1 − m1))]

Z
(A.15)

where Z is the evidence summing over all combinations normalizing the fraction:

Z = p(E = 1) =
∑
C1

∑
C2

p(E = 1|C1, C2)p(C1)p(C2) (A.16)

= p(E = 1|C1 = 1, C2 = 1)p(C1 = 1)p(C2 = 1)+ (A.17)

p(E = 1|C1 = 1, C2 = 0)p(C1 = 1)p(C2 = 0)+ (A.18)

p(E = 1|C1 = 0, C2 = 1)p(C1 = 0)p(C2 = 1)+ (A.19)

p(E = 1|C1 = 0, C2 = 0)p(C1 = 0)p(C2 = 0) (A.20)

Substituting our model parameterization:

Z = [1− (1− b)(1−m1)(1−m2)]p(C1)p(C2)+ (A.21)

[1− (1− b)(1−m1)]p(C1)(1− p(C2))+ (A.22)

1− (1− b)(1−m2)p(C2)+ (A.23)

b(1− p(C1))(1− p(C2)) (A.24)
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Appendix A Analysis – Details

Task VIII:

p(C1 = 1|E = 1, C2 = 0)

p(C1 = 1|E = 1, C2 = 0)
BR
=

p(E = 1|C1 = 1, C2 = 0)p(C1 = 1 | C2 = 0)

p(E = 1, C2 = 0)
(A.25)

M+IA
=

p(E = 1|C1 = 1, C2 = 0)p(C1 = 1)

p(E = 1|C1 = 1, C2 = 0)p(C1 = 1) + p(E = 1|C1 = 0, C2 = 0)p(C1 = 0)
(A.26)

MD
=

[1 − (1 − b)(1 − m1)]p(C1)

[1 − (1 − b)(1 − m1)]p(C1) + b(1 − p(C1))
(A.27)

A.3.5 Diagnostic Inference – Effect Absent
Task IX:
p(C1 = 1|E = 0, C2 = 1)

p(C1 = 1|E = 0, C2 = 1)
BR
=

p(E = 0|C1 = 1, C2 = 1)p(C1 = 1)

p(E = 0, C2 = 1)
(A.28)

M
=

[1 − p(E = 1|C1 = 1, C2 = 1)]p(C1 = 1)

[1 − p(E = 1|C1 = 1, C2 = 1)]p(C1 = 1) + [1 − p(E = 1|C1 = 0, C2 = 1)]p(C1 = 0)
(A.29)

MD
=

[(1 − b)(1 − m1)(1 − m2)]p(C1)

[(1 − b)(1 − m1)(1 − m2)]p(C1) + [(1 − b)(1 − m2)](1 − p(C1))
(A.30)

Task X:
p(C1 = 1|E = 0)

p(C1 = 1|E = 0)
BR
=

p(E = 0|C1 = 1)p(C1 = 1)

p(E = 0)
(A.31)

M+IA
=

p(C1 = 1)
∑

C2
p(E = 0|C1 = 1, C2)p(C2)∑

C1

∑
C2

p(E = 0|C1, C2)p(C1)p(C2)
(A.32)

MD
=

p(C1)[p(C2)(1 − b)(1 − m1)(1 − m2) + (1 − p(C2))(1 − b)(1 − m1)]

Z
(A.33)

where Z is again the evidence normalizing the fraction (see Equation (A.16)).

Task XI:
p(C1 = 1|E = 0, C2 = 0)

p(C1 = 1|E = 0, C2 = 0)
BR
=

p(E = 0|C1 = 1, C2 = 0)p(C1 = 1 | C2 = 0)

p(E = 0 | C2 = 0)
(A.34)

M+IA
=

[1− p(E = 1|C1 = 1, C2 = 0)]p(C1 = 1)

[1− p(E = 1|C1 = 1, C2 = 0)]p(C1 = 1) + [1− p(E = 1|C1 = 0, C2 = 0)]p(C1 = 0)
(A.35)

MD
=

[(1− b)(1−m1)]p(C1)

[(1− b)(1−m1)]p(C1) + (1− b)(1− p(C1))
(A.36)

A.4 LLM Details
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A.4 LLM Details

Table A.1: LLM release dates and context window sizes. Parameters are not publicly disclosed
for. Context window sizes are as reported by the providers, with some variation depending on
the specific version or subscription plan (e.g., enterprise plans). The context windows of all
models exceed the maximum input length of our tasks (approximately 500 tokens). Note that
some models have different context window sizes for input and output, which is indicated where
applicable.

Provider LLM-name Context Window Size Release date

Anthropic claude-3-5-haiku-20241022 200K 2024-10-22
Anthropic claude-3-7-sonnet-20250219 200K 2025-02-24
Anthropic claude-3-haiku-20240307 200K 2024-03-13
Anthropic claude-3-opus 200K 2024-03-04
Anthropic claude-3-sonnet-20240229 200K 2024-02-29
Anthropic claude-opus-4-1-20250805 200K (500K on Enterprise) 2025-08-05
Anthropic claude-opus-4-20250514 200K (500K on Enterprise) 2025-05-22
Anthropic claude-sonnet-4-20250514 200K (500K on Enterprise) 2025-05-22
Google gemini-1.5-pro 1M 2024-02-15
Google gemini-2.5-flash 1M 2025-05-14
Google gemini-2.5-flash-lite 1M 2025-05-14
Google gemini-2.5-pro 1M 2025-03-25
OpenAI gpt-3.5-turbo 16K 2023-03-01
OpenAI gpt-4 8K-128K (version dependent) 2023-03-14
OpenAI gpt-4.1 1M 2025-04-14
OpenAI gpt-4.1-mini 1M 2025-04-14
OpenAI gpt-4o 128K 2024-05-13
OpenAI gpt-5-mini-v_low-r_high 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-mini-v_low-r_low 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-mini-v_low-r_medium 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-mini-v_low-r_minimal 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-nano-v_low-r_high 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-nano-v_low-r_low 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-nano-v_low-r_medium 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-nano-v_low-r_minimal 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-v_low-r_low 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-v_low-r_medium 400K (272K input + 128K output) 2025-08-07
OpenAI gpt-5-v_low-r_minimal 400K (272K input + 128K output) 2025-08-07
OpenAI o1 8k-128k not clearly disclosed 2024-09-12
OpenAI o1-mini 8k-128k not clearly disclosed 2024-09-12
OpenAI o3 8k-200k not clearly disclosed 2025-04-16
OpenAI o3-mini 8k-200k not clearly disclosed 2025-01-31
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Appendix B Additional Results

B.1 Domain differences per experiment and prompt-style
Kruskal–Wallis Test. The Kruskal–Wallis test is a nonparametric method to compare the central
tendencies of k ≥ 3 independent groups. All observations across groups are pooled and ranked
from 1 to N (with average ranks for ties). Let Ri denote the sum of ranks in group i of size ni.
The test statistic is

H =
12

N(N + 1)

k∑
i=1

R2
i

ni
− 3(N + 1), (B.1)

where N =
∑k

i=1 ni is the total sample size.

Under the null hypothesis that all k domains come from the same distribution, H approximately
follows a χ2 distribution with k − 1 degrees of freedom. Large values of H indicate that at least
one group median differs from the others.

Pairwise. For every domain pair within an agent, we ran a two-sided Mann–Whitney U test. Null:
the two domain distributions are identical; alternative: they differ. We report the rank-biserial
effect size r = 2U

n1n2
− 1 ∈ [−1, 1] (positive indicates the first domain tends higher). P-values

were BH–FDR adjusted within each agent across all its domain pairs (default α = 0.05).

B.1.1 RW17

Table B.1: Kruskal–Wallis across agents within each domain, RW17-Numeric prompts.

Domain k H df p (raw) pFDR

economy 29 165.86 28 1.6× 10−21 4.8× 10−21

sociology 29 157.78 28 4.8× 10−20 7.2× 10−20

weather 29 70.72 28 1.5× 10−5 1.5× 10−5

Table B.2: Kruskal–Wallis across agents within each domain. (RW17, Numeric prompts)

Domain k H df p (raw) pFDR

abs_all_10 28 93.27 27 3.2× 10−9 3.2× 10−9

abs_alnum_10 30 107.91 29 5.1× 10−11 7.7× 10−11

abs_num_symb_10 28 128.56 27 3.5× 10−15 1.0× 10−14

Numeric prompts.

Numeric prompts.

CoT prompts.
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B.1 Domain differences per experiment and prompt-style

Table B.3: Kruskal–Wallis across domains within each agent. (RW17, Numeric prompts)

Agent k H df p (raw) pFDR

claude-3-5-haiku-20241022 3 2.23 2 0.327 0.994
claude-3-7-sonnet-20250219 3 0.11 2 0.947 0.994
claude-3-haiku-20240307 3 1.50 2 0.472 0.994
claude-3-opus 3 3.84 2 0.146 0.994
claude-sonnet-4-20250514 3 1.17 2 0.557 0.994
gemini-1.5-pro 3 0.13 2 0.937 0.994
gemini-2.5-flash 3 0.17 2 0.918 0.994
gemini-2.5-flash-lite 3 0.12 2 0.940 0.994
gemini-2.5-pro 3 0.08 2 0.960 0.994
gpt-3.5-turbo 3 3.65 2 0.161 0.994
gpt-4 3 0.35 2 0.838 0.994
gpt-4.1 3 0.44 2 0.801 0.994
gpt-4.1-mini 3 0.05 2 0.974 0.994
gpt-4o 3 0.15 2 0.930 0.994
gpt-5-mini-v_low-r_high 3 0.06 2 0.970 0.994
gpt-5-mini-v_low-r_low 3 0.16 2 0.924 0.994
gpt-5-mini-v_low-r_medium 3 0.01 2 0.993 0.994
gpt-5-mini-v_low-r_minimal 3 0.11 2 0.946 0.994
gpt-5-nano-v_low-r_low 3 0.91 2 0.633 0.994
gpt-5-nano-v_low-r_medium 3 0.04 2 0.978 0.994
gpt-5-nano-v_low-r_minimal 3 5.79 2 0.055 0.994
gpt-5-v_low-r_low 3 0.24 2 0.887 0.994
gpt-5-v_low-r_medium 3 0.01 2 0.994 0.994
gpt-5-v_low-r_minimal 3 0.02 2 0.992 0.994
o1 3 0.09 2 0.955 0.994
o1-mini 3 0.02 2 0.989 0.994
o3 3 0.33 2 0.846 0.994
o3-mini 3 0.19 2 0.910 0.994

Table B.4: Kruskal–Wallis across agents within each domain. (RW17, CoT prompts)

Domain k H df p (raw) pFDR

abs_all_10 25 118.45 24 1.8× 10−14 2.7× 10−14

abs_alnum_10 26 114.64 25 1.9× 10−13 1.9× 10−13

abs_num_symb_10 25 126.32 24 7.2× 10−16 2.2× 10−15
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Appendix B Additional Results

Table B.5: Kruskal–Wallis across domains within each agent. (RW17, Numeric prompts)

Agent k H df p (raw) pFDR

claude-3-5-haiku-20241022 3 0.89 2 0.641 0.988
claude-3-7-sonnet-20250219 3 0.06 2 0.971 0.988
claude-3-haiku-20240307 3 5.33 2 0.070 0.988
claude-3-opus 3 0.94 2 0.624 0.988
claude-sonnet-4-20250514 3 0.08 2 0.960 0.988
gemini-1.5-pro 3 0.13 2 0.937 0.988
gemini-2.5-flash 3 0.09 2 0.958 0.988
gemini-2.5-flash-lite 3 0.22 2 0.894 0.988
gemini-2.5-pro 3 0.02 2 0.988 0.988
gpt-3.5-turbo 3 2.71 2 0.258 0.988
gpt-4 3 0.55 2 0.758 0.988
gpt-4.1 3 0.05 2 0.975 0.988
gpt-4.1-mini 3 0.08 2 0.963 0.988
gpt-4o 3 0.09 2 0.958 0.988
gpt-5-mini-v_low-r_low 3 0.40 2 0.819 0.988
gpt-5-mini-v_low-r_medium 3 0.06 2 0.972 0.988
gpt-5-mini-v_low-r_minimal 3 0.15 2 0.927 0.988
gpt-5-nano-v_low-r_low 3 1.46 2 0.483 0.988
gpt-5-nano-v_low-r_minimal 3 1.54 2 0.463 0.988
gpt-5-v_low-r_low 3 0.36 2 0.834 0.988
gpt-5-v_low-r_minimal 3 0.08 2 0.961 0.988
o1 3 0.18 2 0.916 0.988
o1-mini 3 0.30 2 0.861 0.988
o3 3 0.03 2 0.986 0.988
o3-mini 3 0.06 2 0.970 0.988

Table B.6: Kruskal–Wallis across agents within each domain. RW17-overloaded, Numeric

Domain k H df p (raw) pFDR

econ_ovl_e=ctl 20 188.39 19 6.8× 10−30 4.1× 10−29

econ_ovl_e=soc 20 184.71 19 3.7× 10−29 1.1× 10−28

soc_ovl_e=ctl 20 169.17 19 4.1× 10−26 6.2× 10−26

soc_ovl_e=econ 20 177.50 19 9.6× 10−28 1.9× 10−27

weath_ovl_e=ctl 20 124.52 19 1.6× 10−17 1.9× 10−17

weath_ovl_e=econ 20 124.11 19 1.9× 10−17 1.9× 10−17
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B.1 Domain differences per experiment and prompt-style

Table B.7: Kruskal–Wallis across domains within each agent. RW17-overloaded, Numeric

Agent k H df p (raw) pFDR

claude-3-5-haiku-20241022 6 5.19 5 0.393 0.999
claude-3-7-sonnet-20250219 6 2.62 5 0.758 0.999
claude-3-haiku-20240307 6 10.15 5 0.071 0.474
claude-3-opus 6 1.99 5 0.850 0.999
claude-sonnet-4-20250514 6 3.50 5 0.623 0.999
gemini-1.5-pro 6 2.78 5 0.734 0.999
gemini-2.5-flash 6 1.18 5 0.946 0.999
gemini-2.5-flash-lite 6 1.19 5 0.946 0.999
gemini-2.5-pro 6 0.24 5 0.999 0.999
gpt-3.5-turbo 6 10.54 5 0.061 0.474
gpt-4 6 1.62 5 0.899 0.999
gpt-4.1 6 1.01 5 0.961 0.999
gpt-4.1-mini 6 3.82 5 0.576 0.999
gpt-4o 6 0.56 5 0.990 0.999
gpt-5-mini-v_low-r_low 6 1.49 5 0.914 0.999
gpt-5-mini-v_low-r_minimal 6 13.54 5 0.019 0.377
gpt-5-nano-v_low-r_low 6 0.30 5 0.998 0.999
gpt-5-nano-v_low-r_minimal 6 0.91 5 0.970 0.999
gpt-5-v_low-r_low 6 0.68 5 0.984 0.999
gpt-5-v_low-r_minimal 6 3.72 5 0.591 0.999

Table B.8: Kruskal–Wallis across domains within each agent. RW17-overloaded, CoT

Domain k H df p (raw) pFDR

econ_ovl_e=ctl 19 90.17 18 1.3× 10−11 2.7× 10−11

econ_ovl_e=soc 21 81.49 20 2.2× 10−9 3.3× 10−9

soc_ovl_e=ctl 19 93.59 18 3.2× 10−12 1.9× 10−11

soc_ovl_e=econ 21 94.64 20 1.1× 10−11 2.7× 10−11

weath_ovl_e=ctl 18 64.64 17 1.8× 10−7 1.8× 10−7

weath_ovl_e=econ 21 71.06 20 1.2× 10−7 1.5× 10−7

Table B.9: Kruskal–Wallis across agents within each domain. RW17-overloaded, CoT
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Table B.10: Kruskal–Wallis across agents within each domain. RW17-overloaded, CoT

Agent k H df p (raw) pFDR

claude-3-5-haiku-20241022 6 3.60 5 0.609 0.988
claude-3-7-sonnet-20250219 6 0.79 5 0.977 0.988
claude-3-haiku-20240307 6 0.85 5 0.973 0.988
claude-3-opus 6 2.03 5 0.844 0.988
claude-sonnet-4-20250514 6 1.33 5 0.932 0.988
gemini-1.5-pro 6 2.40 5 0.791 0.988
gemini-2.5-flash 6 1.16 5 0.949 0.988
gemini-2.5-flash-lite 6 0.78 5 0.978 0.988
gemini-2.5-pro 6 0.60 5 0.988 0.988
gpt-3.5-turbo 6 2.82 5 0.728 0.988
gpt-4 3 0.92 2 0.630 0.988
gpt-4.1 6 0.77 5 0.979 0.988
gpt-4.1-mini 6 5.64 5 0.342 0.988
gpt-4o 6 2.29 5 0.808 0.988
gpt-5-mini-v_low-r_low 5 2.93 4 0.570 0.988
gpt-5-mini-v_low-r_medium 6 2.11 5 0.833 0.988
gpt-5-mini-v_low-r_minimal 6 4.71 5 0.452 0.988
gpt-5-nano-v_low-r_low 6 0.89 5 0.971 0.988
gpt-5-nano-v_low-r_minimal 6 6.33 5 0.276 0.988
gpt-5-v_low-r_low 3 0.07 2 0.963 0.988
gpt-5-v_low-r_minimal 6 0.96 5 0.966 0.988

Domain k H df p (raw) pFDR

abs_all_10_overloaded_de 12 42.67 11 1.2× 10−5 1.2× 10−5

abs_alnum_10_overloaded_de 14 54.69 13 4.6× 10−7 6.9× 10−7

abs_num_symb_10_overloaded_de 12 77.60 11 4.3× 10−12 1.3× 10−11

Table B.11: Kruskal–Wallis across agents within each domain. RW17-overloaded, Numeric

Table B.12: Kruskal–Wallis across domains within each agent, Abstract Overloaded, Numeric.

Agent k H df p (raw) pFDR

claude-3-5-haiku-20241022 3 11.16 2 0.004 0.045
claude-3-7-sonnet-20250219 3 0.16 2 0.925 0.994
claude-3-haiku-20240307 3 2.29 2 0.318 0.994
claude-3-opus 3 1.63 2 0.442 0.994
claude-sonnet-4-20250514 3 0.14 2 0.933 0.994
gemini-1.5-pro 3 0.12 2 0.942 0.994
gemini-2.5-flash 3 0.29 2 0.864 0.994
gemini-2.5-flash-lite 3 0.42 2 0.809 0.994
gemini-2.5-pro 3 0.04 2 0.981 0.994
gpt-5-mini-v_low-r_minimal 3 1.18 2 0.553 0.994
gpt-5-nano-v_low-r_minimal 3 2.14 2 0.344 0.994
gpt-5-v_low-r_minimal 3 0.01 2 0.994 0.994

Table B.13: Kruskal–Wallis across agents within each domain. RW17-overloaded, CoT

Domain k H df p (raw) pFDR

abs_all_10_overloaded_de 12 57.96 11 2.2× 10−8 3.7× 10−8

abs_alnum_10_overloaded_de 12 51.63 11 3.2× 10−7 3.2× 10−7

abs_num_symb_10_overloaded_de 12 57.71 11 2.5× 10−8 3.7× 10−8
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B.2 Human-LLM alignment: Domain-wise breakdowns for Chain-of-Thought prompts
in comparison to Numeric prompts

Table B.14: Kruskal–Wallis across domains within each agent. RW17-overloaded, CoT

Agent k H df p (raw) pFDR

claude-3-5-haiku-20241022 3 0.75 2 0.688 0.992
claude-3-7-sonnet-20250219 3 0.21 2 0.902 0.992
claude-3-haiku-20240307 3 0.76 2 0.683 0.992
claude-3-opus 3 0.55 2 0.758 0.992
claude-sonnet-4-20250514 3 0.10 2 0.953 0.992
gemini-1.5-pro 3 0.21 2 0.899 0.992
gemini-2.5-flash 3 0.04 2 0.982 0.992
gemini-2.5-flash-lite 3 0.04 2 0.979 0.992
gemini-2.5-pro 3 0.04 2 0.978 0.992
gpt-5-mini-v_low-r_minimal 3 0.02 2 0.992 0.992
gpt-5-nano-v_low-r_minimal 3 2.02 2 0.364 0.992
gpt-5-v_low-r_minimal 3 0.07 2 0.968 0.992

B.2 Human-LLM alignment: Domain-wise breakdowns for
Chain-of-Thought prompts in comparison to Numeric
prompts
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Figure B.1: Human–LLM alignment. Each panel reports human-LLM alignment per domain
(shades of gray) and pooled domains (red) with 95% bootstrapped confidence intervals sorted
from highest to lowest ρ. Vertical dashed lines indicate the minimum and maximum pooled ρ
values across agents.
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B.3 Additional Results for the distribution of likelihood judgements

Table B.15: Human–LLM alignment (Spearman rho) across domains for single-shot/numeric
prompting. Agents are ordered by pooled domain alignment. Each cell reports the bootstrapped
Spearman ρ and 95% confidence interval [lower, upper]. Uncertainty reflects the range of ρ
values obtained by nonparametric bootstrapping (2,000 resamples) for each agent–domain pair.

Agent Domain
pooled economy sociology weather

gemini-2.5-pro 0.849 [0.838, 0.858] 0.839 [0.820, 0.855] 0.860 [0.842, 0.877] 0.864 [0.848, 0.879]
claude-sonnet-4-20250514 0.843 [0.805, 0.874] 0.831 [0.748, 0.889] 0.841 [0.766, 0.895] 0.866 [0.802, 0.906]
claude-opus-4-20250514 0.835 [0.792, 0.870] 0.770 [0.667, 0.847] 0.850 [0.770, 0.908] 0.873 [0.810, 0.912]
gemini-2.5-flash 0.831 [0.792, 0.862] 0.821 [0.736, 0.876] 0.832 [0.755, 0.886] 0.849 [0.777, 0.898]
claude-opus-4-1-20250805 0.829 [0.779, 0.868] 0.792 [0.691, 0.864] 0.840 [0.756, 0.899] 0.861 [0.767, 0.910]
claude-3-7-sonnet-20250219 0.829 [0.789, 0.861] 0.796 [0.701, 0.856] 0.838 [0.764, 0.892] 0.863 [0.801, 0.902]
gpt-5-v_low-r_medium 0.821 [0.773, 0.860] 0.795 [0.689, 0.865] 0.839 [0.760, 0.893] 0.835 [0.747, 0.886]
gpt-4.1 0.818 [0.759, 0.862] 0.769 [0.634, 0.860] 0.815 [0.698, 0.899] 0.877 [0.817, 0.913]
gpt-5-v_low-r_minimal 0.816 [0.772, 0.855] 0.799 [0.698, 0.868] 0.808 [0.718, 0.871] 0.844 [0.769, 0.890]
gpt-5-v_low-r_low 0.815 [0.771, 0.850] 0.815 [0.727, 0.869] 0.824 [0.733, 0.889] 0.807 [0.731, 0.857]
gpt-5-mini-v_low-r_medium 0.812 [0.761, 0.851] 0.801 [0.700, 0.868] 0.809 [0.713, 0.874] 0.817 [0.726, 0.871]
gpt-5-mini-v_low-r_low 0.810 [0.759, 0.850] 0.805 [0.714, 0.862] 0.776 [0.650, 0.862] 0.832 [0.750, 0.880]
gpt-5-mini-v_low-r_high 0.805 [0.754, 0.847] 0.797 [0.679, 0.872] 0.813 [0.709, 0.886] 0.817 [0.735, 0.868]
o3 0.797 [0.753, 0.835] 0.807 [0.715, 0.870] 0.805 [0.710, 0.875] 0.799 [0.711, 0.850]
o3-mini 0.797 [0.738, 0.846] 0.782 [0.668, 0.857] 0.848 [0.777, 0.897] 0.787 [0.665, 0.873]
gpt-5-nano-v_low-r_medium 0.792 [0.741, 0.831] 0.764 [0.658, 0.832] 0.821 [0.739, 0.879] 0.799 [0.697, 0.862]
gpt-5-nano-v_low-r_high 0.779 [0.721, 0.825] 0.757 [0.642, 0.832] 0.827 [0.750, 0.883] 0.799 [0.683, 0.877]
claude-3-sonnet-20240229 0.779 [0.723, 0.825] 0.721 [0.585, 0.815] 0.787 [0.686, 0.854] 0.831 [0.750, 0.888]
gpt-4o 0.778 [0.759, 0.796] 0.786 [0.757, 0.810] 0.776 [0.737, 0.812] 0.784 [0.750, 0.816]
gpt-5-nano-v_low-r_low 0.762 [0.704, 0.809] 0.741 [0.626, 0.818] 0.721 [0.595, 0.817] 0.816 [0.719, 0.873]
gpt-4.1-mini 0.739 [0.662, 0.805] 0.756 [0.651, 0.833] 0.681 [0.500, 0.832] 0.780 [0.657, 0.870]
gemini-1.5-pro 0.723 [0.697, 0.748] 0.815 [0.792, 0.837] 0.737 [0.697, 0.771] 0.642 [0.583, 0.694]
gpt-3.5-turbo 0.683 [0.598, 0.757] 0.699 [0.552, 0.807] 0.567 [0.386, 0.716] 0.770 [0.654, 0.859]
gpt-4 0.668 [0.599, 0.727] 0.585 [0.438, 0.702] 0.666 [0.529, 0.762] 0.724 [0.614, 0.809]
claude-3-haiku-20240307 0.659 [0.578, 0.725] 0.646 [0.494, 0.771] 0.595 [0.434, 0.735] 0.712 [0.598, 0.803]
gpt-5-mini-v_low-r_minimal 0.634 [0.553, 0.706] 0.577 [0.420, 0.704] 0.601 [0.433, 0.721] 0.710 [0.572, 0.818]
claude-3-5-haiku-20241022 0.623 [0.547, 0.690] 0.487 [0.279, 0.637] 0.571 [0.412, 0.686] 0.736 [0.633, 0.819]
gpt-5-nano-v_low-r_minimal 0.382 [0.262, 0.499] 0.520 [0.324, 0.691] 0.132 [-0.108, 0.363] 0.486 [0.298, 0.654]
gemini-2.5-flash-lite 0.342 [0.213, 0.465] 0.372 [0.151, 0.569] 0.217 [-0.062, 0.458] 0.383 [0.141, 0.593]

B.3 Additional Results for the distribution of likelihood
judgements

Likelihood judgements are often clustered around 0, 100, and 50 motivating the Huber
loss for CBN fitting
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(c) GPT-3.5-Turbo
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(e) Claude-3-7-Sonnet-20250219
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Figure B.2: Distribution of Likelihood Judgements by Domain, RW17 experiment.
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B.4 Additional Results for the effect of Chain-of-Thought prompts on causal reasoning
across experiments

Table B.16: Human–LLM alignment (Spearman rho) across domains for chain-of-thought prompt-
ing. Agents are ordered by pooled domain alignment. Each cell reports the bootstrapped Spearman
ρ and 95% confidence interval [lower, upper]. Uncertainty reflects the range of ρ values obtained
by nonparametric bootstrapping (2,000 resamples) for each agent–domain pair.

Agent Domain
pooled economy sociology weather

claude-3-7-sonnet-20250219 0.857 [0.821, 0.885] 0.843 [0.765, 0.892] 0.867 [0.796, 0.917] 0.865 [0.799, 0.908]
gemini-2.5-flash-lite 0.845 [0.802, 0.877] 0.818 [0.717, 0.882] 0.852 [0.760, 0.912] 0.852 [0.787, 0.894]
claude-sonnet-4-20250514 0.835 [0.794, 0.868] 0.826 [0.757, 0.877] 0.818 [0.724, 0.889] 0.862 [0.782, 0.906]
claude-opus-4-20250514 0.835 [0.785, 0.873] 0.798 [0.696, 0.858] 0.845 [0.746, 0.909] 0.869 [0.794, 0.916]
gpt-4.1 0.835 [0.787, 0.874] 0.824 [0.737, 0.881] 0.839 [0.745, 0.906] 0.834 [0.739, 0.891]
claude-opus-4-1-20250805 0.831 [0.782, 0.871] 0.816 [0.720, 0.875] 0.849 [0.755, 0.915] 0.833 [0.737, 0.892]
gemini-1.5-pro 0.831 [0.816, 0.843] 0.815 [0.790, 0.836] 0.852 [0.830, 0.872] 0.828 [0.802, 0.851]
gemini-2.5-pro 0.831 [0.793, 0.861] 0.809 [0.727, 0.865] 0.833 [0.754, 0.888] 0.859 [0.796, 0.898]
gemini-2.5-flash 0.830 [0.786, 0.865] 0.839 [0.755, 0.892] 0.840 [0.754, 0.904] 0.828 [0.740, 0.881]
gpt-4o 0.818 [0.763, 0.861] 0.804 [0.694, 0.875] 0.809 [0.689, 0.895] 0.836 [0.759, 0.884]
o3 0.816 [0.770, 0.853] 0.833 [0.744, 0.887] 0.822 [0.721, 0.892] 0.807 [0.722, 0.861]
gpt-5-mini-v_low-r_medium 0.810 [0.759, 0.851] 0.790 [0.682, 0.857] 0.804 [0.704, 0.876] 0.827 [0.730, 0.882]
gpt-4.1-mini 0.806 [0.747, 0.851] 0.782 [0.648, 0.869] 0.820 [0.709, 0.894] 0.813 [0.723, 0.869]
gpt-5-v_low-r_low 0.805 [0.758, 0.843] 0.784 [0.679, 0.851] 0.808 [0.707, 0.883] 0.819 [0.743, 0.868]
claude-3-opus 0.802 [0.740, 0.853] 0.802 [0.686, 0.869] 0.751 [0.596, 0.872] 0.842 [0.750, 0.905]
o3-mini 0.801 [0.741, 0.845] 0.752 [0.642, 0.825] 0.826 [0.731, 0.892] 0.827 [0.722, 0.887]
gpt-5-mini-v_low-r_low 0.797 [0.740, 0.842] 0.762 [0.643, 0.839] 0.811 [0.712, 0.884] 0.817 [0.724, 0.873]
gpt-5-v_low-r_minimal 0.793 [0.738, 0.840] 0.768 [0.648, 0.848] 0.811 [0.712, 0.884] 0.813 [0.712, 0.874]
gpt-4 0.790 [0.737, 0.835] 0.749 [0.641, 0.830] 0.804 [0.693, 0.881] 0.814 [0.726, 0.874]
gpt-5-mini-v_low-r_minimal 0.784 [0.719, 0.833] 0.727 [0.595, 0.820] 0.798 [0.680, 0.881] 0.812 [0.708, 0.877]
claude-3-5-haiku-20241022 0.771 [0.712, 0.818] 0.680 [0.526, 0.791] 0.803 [0.713, 0.864] 0.808 [0.708, 0.877]
claude-3-sonnet-20240229 0.767 [0.704, 0.819] 0.777 [0.674, 0.851] 0.753 [0.623, 0.843] 0.784 [0.678, 0.860]
gpt-5-nano-v_low-r_low 0.766 [0.700, 0.818] 0.761 [0.657, 0.832] 0.684 [0.518, 0.811] 0.831 [0.739, 0.885]
gpt-5-v_low-r_medium 0.756 [0.588, 0.860] 0.756 [0.588, 0.860] – –
gpt-5-nano-v_low-r_minimal 0.709 [0.625, 0.776] 0.746 [0.636, 0.823] 0.716 [0.594, 0.803] 0.684 [0.494, 0.833]
claude-3-haiku-20240307 0.688 [0.609, 0.757] 0.656 [0.495, 0.783] 0.636 [0.473, 0.762] 0.754 [0.634, 0.839]

B.4 Additional Results for the effect of Chain-of-Thought
prompts on causal reasoning across experiments
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Figure B.3: Explaining Away (EA) levels by agent on semantically meaningful content (RW17) (Fig-
ures B.3(a) and B.3(c)) and abstract, semantically meaningless content Figures B.3(b) and B.3(d) and
the effects of CoT. The left column represents the plain versions and the right column the overloaded
versions (irrelevant text injected) of the respective experiments. EA-levels are computed on normalized raw
agents’ likelihood judgements (not their respective CBN predictions). EA is prevalent: overall across all
conditions (see Figures B.3(a) to B.3(d)), 90.6% of LLMs exceed the human EA baseline (RW17, numeric)
EAhuman ≈ 0.100 and 81.3% exceed the the stricter threshold that we set to EA > 0.3. CoT generally
increases EA-pass rates relative to numeric in every setting (e.g., RW17 plain: 58.6%→69.2% vs. our
threshold; 79.3%→84.6% vs. human; Abstract plain: 60.0%→76.0% and 80.0%→92.0%). Overloaded
prompts reduce EA-levels but rates remain high (RW17 human-threshold: 73.3%→61.9%; our threshold:
53.3%→38.1%; Abstract human-threshold: 80.0%→64.3%; our threshold: 56.7%→42.9%). Abstract
mirrors meaningful content (numeric threshold: 58.6% [RW17] vs. 60.0% [Abstract]; CoT: 69.2% vs.
76.0%; vs. human: 79.3%/84.6% vs. 80.0%/92.0%).
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B.4 Additional Results for the effect of Chain-of-Thought prompts on causal reasoning
across experiments
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Figure B.4: Markov Violation (MV) levels across experiments by agent on semantically meaningful
content (RW17) (Figures B.4(a) and B.4(c)) and abstract, semantically meaningless content (Figures B.4(b)
and B.4(d)) and the effects of CoT. The left column represents the plain versions and the right column the
overloaded versions (irrelevant text injected) of the respective experiments. MV-levels are computed on
normalized raw agents’ likelihood judgements (not their respective CBN predictions). When agents fall
within the gray shadowed area (representing |MV| ≤ 0 + ϵ), where ϵ = 0.05, we deem them as respecting
independence of causes (i.e., Markov compliant). Generally high Markov compliance (respecting
independence of causes): MV magnitudes are typically small. Overall, 93.8% of agents meet our
MV-threshold |MV| ≤ 0.05 at least once across all conditions and 93.8% are at or below the human
baseline. Typical |MV| across agents is 0.010 (95% CI [0.002, 0.031]). Human baseline (RW17, numeric)
|MVhuman| ≈ 0.100.
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Figure B.5: Reasoning Consistency (LOOCV-R2) across experiments by agent on semantically
meaningful content (RW17) (Figures B.5(a) and B.5(c)) and abstract, semantically meaningless content
(Figures B.5(b) and B.5(d)) and the effects of CoT. The left column represents the plain versions and the
right column the overloaded versions (irrelevant text injected) of the respective experiments. MV-levels
are computed on normalized raw agents’ likelihood judgements (not their respective CBN predictions).
When agents fall within the gray shadowed aream, we deem them as respecting independence of causes
(i.e., Markov compliant). Human baseline (RW17, numeric) LOOCVR2 ≈ 0.937.
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Figure B.6: Leak-Adjusted Determinacy (LAD) levels LAD = m̄− b vs. R2 EA, and MV levels vary
widely across agents and experiment / prompt category manipulations. The figure illustrates: (1) how
consistent the agent is under different prompts and content manipulations —- closer scatter clustering
signals greater robustness to content manipulations and prompt variations; (2) how deterministic an agent
is – more scatters in the top (LAD→ 1) indicate higher determinism, namely high causal strength m and
low b consistent with Cheng [41] causal power theory. Conversely, lower LAD → −1 values indicate
more probabilistic reasoning.
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(d) claude-sonnet-4-20250514 8/8 experiment/prompt combinations

Figure B.7: Leak-Adjusted Determinacy (LAD) levels LAD = m̄− b vs. R2 EA, and MV levels vary
widely across agents and experiment / prompt category manipulations. The figure illustrates: (1) how
consistent the agent is under different prompts and content manipulations —- closer scatter clustering
signals greater robustness to content manipulations and prompt variations; (2) how deterministic an agent
is – more scatters in the top (LAD→ 1) indicate higher determinism, namely high causal strength m and
low b consistent with Cheng [41] causal power theory. Conversely, lower LAD → −1 values indicate
more probabilistic reasoning.
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Figure B.8: Leak-Adjusted Determinacy (LAD) levels LAD = m̄− b vs. R2 EA, and MV levels vary
widely across agents and experiment / prompt category manipulations. The figure illustrates: (1) how
consistent the agent is under different prompts and content manipulations —- closer scatter clustering
signals greater robustness to content manipulations and prompt variations; (2) how deterministic an agent
is – more scatters in the top (LAD→ 1) indicate higher determinism, namely high causal strength m and
low b consistent with Cheng [41] causal power theory. Conversely, lower LAD → −1 values indicate
more probabilistic reasoning.
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(d) gpt-5-v_low-r_low 6/8 experiment/prompt combinations

Figure B.9: Leak-Adjusted Determinacy (LAD) levels LAD = m̄− b vs. R2 EA, and MV levels vary
widely across agents and experiment / prompt category manipulations. The figure illustrates: (1) how
consistent the agent is under different prompts and content manipulations —- closer scatter clustering
signals greater robustness to content manipulations and prompt variations; (2) how deterministic an agent
is – more scatters in the top (LAD→ 1) indicate higher determinism, namely high causal strength m and
low b consistent with Cheng [41] causal power theory. Conversely, lower LAD → −1 values indicate
more probabilistic reasoning. 77
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(a) gpt-5-mini-v_low-r_high 2/8 experiment/prompt combinations
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(d) gpt-5-mini-v_low-r_minimal 8/8 experiment/prompt combinations

Figure B.10: Leak-Adjusted Determinacy (LAD) levels LAD = m̄− b vs. R2 EA, and MV levels
vary widely across agents and experiment / prompt category manipulations. The figure illustrates: (1)
how consistent the agent is under different prompts and content manipulations —- closer scatter clustering
signals greater robustness to content manipulations and prompt variations; (2) how deterministic an agent
is – more scatters in the top (LAD→ 1) indicate higher determinism, namely high causal strength m and
low b consistent with Cheng [41] causal power theory. Conversely, lower LAD → −1 values indicate
more probabilistic reasoning.
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B.5 Causal reasoning in Collider Graphs: Reasoning Determinacy versus Reasoning
Robustness, Explainaing Away, and Markov Violation
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Figure B.11: Leak-Adjusted Determinacy (LAD) levels LAD = m̄− b vs. R2 EA, and MV levels
vary widely across agents and experiment / prompt category manipulations. The figure illustrates: (1)
how consistent the agent is under different prompts and content manipulations —- closer scatter clustering
signals greater robustness to content manipulations and prompt variations; (2) how deterministic an agent
is – more scatters in the top (LAD→ 1) indicate higher determinism, namely high causal strength m and
low b consistent with Cheng [41] causal power theory. Conversely, lower LAD → −1 values indicate
more probabilistic reasoning.
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Leak-Adjusted Determinacy (LAD = m−b) vs R2/EA/MV

(a) o3 4/8 experiment/prompt combinations
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Figure B.12: Leak-Adjusted Determinacy (LAD) levels LAD = m̄− b vs. R2 EA, and MV levels
vary widely across agents and experiment / prompt category manipulations. The figure illustrates: (1)
how consistent the agent is under different prompts and content manipulations —- closer scatter clustering
signals greater robustness to content manipulations and prompt variations; (2) how deterministic an agent
is – more scatters in the top (LAD→ 1) indicate higher determinism, namely high causal strength m and
low b consistent with Cheng [41] causal power theory. Conversely, lower LAD → −1 values indicate
more probabilistic reasoning.
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B.5 Causal reasoning in Collider Graphs: Reasoning Determinacy versus Reasoning
Robustness, Explainaing Away, and Markov Violation

B.5.1 Metrics by Release Date of LLMs
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Figure B.13: Explaining away (EA) per experiment and prompt category by LLM release date.
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Figure B.14: Markov Violation (MV) per experiment and prompt category by LLM release date.
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Figure B.15: R2 per experiment and prompt category by LLM release date.
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B.6 Most and Least changing LLMs across prompt-category
& content manipulations

The subsequent plots and tables summarize the most and least changing agents between conditions
(experiments or prompt-styles) per CBN-parameter and LOOCV R2. These results complement
Section 4.5, Section 4.5 and Section 4.6 in Chapter 4.

B.6.1 Experiment-wise changes with fixed prompt-style (Numeric or
CoT)

See also Table B.17 for the top 3 most and least changing agents per experiment pair and a fixed
prompt-style for each CBN-parameter.
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claude-3-7-sonnet-20250219
claude-3-haiku-20240307
claude-opus-4-1-20250805
claude-opus-4-20250514
claude-sonnet-4-20250514
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gemini-2.5-flash
gemini-2.5-flash-lite
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Figure B.16: Pairwise experiment-wise comparisons, Numeric. Each panel shows LOOCV R2

(top left) and CBN parameters (rest) for each agent (color-coded) in two conditions (left/right
per panel). These plots allow to visually identify outliers and the most changing agents between
conditions (i.e., agents with a slope).
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Figure B.17: Pairwise experiment-wise comparisons, CoT. Each panel shows LOOCV R2

(top left) and CBN parameters (rest) for each agent (color-coded) in two conditions (left/right
per panel). These plots allow to visually identify outliers and the most changing agents between
conditions (i.e., agents with a slope).
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RW17 (Num) → RW17-Over (Num); N=19 matched agents
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Figure B.18: Pairwise experiment-wise comparisons, Numeric. Each panel shows LOOCV R2

(top left) and CBN parameters (rest) for each agent (color-coded) in two conditions (left/right
per panel). These plots allow to visually identify outliers and the most changing agents between
conditions (i.e., agents with a slope).
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Figure B.19: Pairwise experiment-wise comparisons, CoT. Each panel shows LOOCV R2

(top left) and CBN parameters (rest) for each agent (color-coded) in two conditions (left/right
per panel). These plots allow to visually identify outliers and the most changing agents between
conditions (i.e., agents with a slope).
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Table B.17: Top-3 most/least-changing agents per experiment-pair condition (by signed ∆; ∆ =
A−B) for given prompt category (PC) and parameter (Param).

Condition A−B PC Param Most Least
RW17 − Abstract-Over CoT b claude-opus-4-20250514 (+0.868); claude-

opus-4-1-20250805 (+0.838); claude-3-
haiku-20240307 (+0.291)

gemini-2.5-pro (-0.001); gpt-5-mini-v_low-
r_minimal (-0.012); gemini-2.5-flash (-0.013)

RW17 − Abstract-Over CoT m1 claude-opus-4-1-20250805 (-0.624); claude-
opus-4-20250514 (-0.596); gpt-5-v_low-
r_minimal (+0.231)

claude-3-7-sonnet-20250219 (-0.003); gpt-5-
nano-v_low-r_minimal (+0.009); gpt-5-mini-
v_low-r_minimal (+0.036)

RW17 − Abstract-Over CoT m2 claude-opus-4-20250514 (-0.716); claude-
opus-4-1-20250805 (-0.624); gpt-5-v_low-
r_minimal (+0.231)

claude-3-7-sonnet-20250219 (-0.003); gpt-5-
nano-v_low-r_minimal (+0.009); gemini-1.5-
pro (+0.012)

RW17 − Abstract-Over CoT p(C) claude-opus-4-1-20250805 (+0.057); claude-
3-5-haiku-20241022 (-0.039); claude-3-7-
sonnet-20250219 (-0.032)

gemini-2.5-flash (+0.007); claude-3-haiku-
20240307 (+0.009); gemini-2.5-flash-lite (-
0.009)

RW17 − Abstract-Over Num b gemini-2.5-flash-lite (-0.240); claude-3-5-
haiku-20241022 (+0.216); gpt-5-mini-v_low-
r_minimal (+0.153)

gemini-2.5-flash (+0.004); gpt-5-v_low-
r_minimal (-0.008); gemini-2.5-pro (+0.012)

RW17 − Abstract-Over Num m1 gpt-5-mini-v_low-r_minimal (+0.312);
claude-opus-4-20250514 (+0.250); claude-
opus-4-1-20250805 (+0.241)

gemini-1.5-pro (-0.010); gemini-2.5-pro
(+0.020); gpt-5-nano-v_low-r_minimal
(+0.042)

RW17 − Abstract-Over Num m2 claude-3-5-haiku-20241022 (-0.342); claude-
3-7-sonnet-20250219 (-0.231); gpt-5-nano-
v_low-r_minimal (-0.225)

claude-opus-4-20250514 (-0.003); gemini-
1.5-pro (-0.010); gemini-2.5-pro (+0.020)

RW17 − Abstract-Over Num p(C) claude-3-5-haiku-20241022 (+0.203);
gemini-1.5-pro (-0.085); claude-sonnet-4-
20250514 (-0.074)

gemini-2.5-pro (+0.003); claude-3-7-
sonnet-20250219 (-0.005); gemini-2.5-flash
(+0.006)

RW17 − Abstract CoT b claude-3-haiku-20240307 (+0.249); claude-
3-5-haiku-20241022 (-0.080); gpt-5-v_low-
r_low (-0.076)

gemini-2.5-pro (+0.003); o3 (+0.005); claude-
sonnet-4-20250514 (+0.007)

RW17 − Abstract CoT m1 claude-3-haiku-20240307 (-0.242); gpt-4
(+0.228); gpt-5-v_low-r_minimal (+0.187)

claude-3-7-sonnet-20250219 (+0.009); o3
(+0.014); claude-3-5-haiku-20241022 (-
0.027)

RW17 − Abstract CoT m2 claude-3-haiku-20240307 (-0.242); gpt-5-
v_low-r_minimal (+0.187); gpt-5-v_low-
r_low (+0.156)

gemini-1.5-pro (+0.006); claude-3-7-sonnet-
20250219 (+0.009); gpt-5-nano-v_low-
r_minimal (+0.014)

RW17 − Abstract CoT p(C) o3-mini (-0.120); claude-3-5-haiku-
20241022 (-0.087); gpt-4.1-mini (-0.068)

claude-3-haiku-20240307 (+0.000); gpt-5-
mini-v_low-r_minimal (+0.001); gpt-5-nano-
v_low-r_minimal (-0.002)

RW17 − Abstract Num b claude-3-5-haiku-20241022 (+0.197);
gemini-2.5-flash-lite (-0.181); gpt-4.1
(+0.159)

gemini-2.5-pro (+0.000); gpt-4o (-0.002);
gemini-1.5-pro (-0.003)

RW17 − Abstract Num m1 gpt-4 (+0.685); gemini-2.5-flash-lite
(+0.463); gpt-5-mini-v_low-r_minimal
(+0.314)

gpt-4o (-0.009); gemini-2.5-pro (+0.016); o3
(-0.020)

RW17 − Abstract Num m2 claude-3-5-haiku-20241022 (-0.345); gemini-
2.5-flash-lite (-0.260); gemini-1.5-pro (-
0.176)

gemini-2.5-pro (+0.016); o3 (-0.020); gpt-4.1
(-0.039)

RW17 − Abstract Num p(C) o3-mini (-0.147); claude-3-haiku-20240307
(+0.105); claude-3-5-haiku-20241022
(+0.099)

gpt-5-v_low-r_low (+0.005); gpt-4o
(+0.007); gpt-4.1 (-0.008)

RW17 − RW17-Over CoT b gpt-4 (+0.123); claude-3-5-haiku-20241022
(+0.092); gpt-5-mini-v_low-r_low (+0.053)

claude-3-opus (+0.002); gemini-2.5-pro
(+0.004); claude-sonnet-4-20250514
(+0.006)

RW17 − RW17-Over CoT m1 gpt-4o (-0.120); gpt-4.1-mini (-0.119); gpt-
4.1 (-0.112)

gemini-2.5-pro (-0.000); gpt-5-v_low-r_low
(-0.001); claude-sonnet-4-20250514 (-0.004)

RW17 − RW17-Over CoT m2 gpt-4 (-0.166); claude-3-opus (+0.135); gpt-
4o (-0.120)

gemini-2.5-pro (-0.000); gpt-5-v_low-r_low
(-0.001); claude-sonnet-4-20250514 (-0.004)

RW17 − RW17-Over CoT p(C) claude-3-haiku-20240307 (-0.067); gpt-4o (-
0.047); gpt-4.1 (-0.046)

claude-3-7-sonnet-20250219 (-0.001);
gemini-2.5-pro (+0.001); gpt-5-v_low-r_low
(-0.002)

RW17 − RW17-Over Num b gpt-4 (+0.275); gemini-2.5-flash-lite (-0.178);
claude-3-5-haiku-20241022 (+0.139)

gemini-2.5-pro (+0.009); gpt-3.5-turbo
(+0.009); gemini-2.5-flash (+0.012)

RW17 − RW17-Over Num m1 gpt-4 (+0.252); claude-sonnet-4-20250514 (-
0.166); gpt-4.1-mini (-0.160)

gpt-5-v_low-r_low (-0.012); gpt-5-nano-
v_low-r_low (-0.013); gemini-2.5-pro (-
0.022)

RW17 − RW17-Over Num m2 gpt-4o (-0.195); claude-sonnet-4-20250514
(-0.166); gpt-4.1-mini (-0.160)

gpt-5-v_low-r_low (-0.012); gemini-2.5-
pro (-0.022); gpt-5-nano-v_low-r_minimal
(+0.035)

RW17 − RW17-Over Num p(C) claude-3-5-haiku-20241022 (+0.219); claude-
3-haiku-20240307 (+0.052); gpt-4 (+0.028)

gpt-4o (+0.001); gpt-5-v_low-r_minimal (-
0.002); gemini-1.5-pro (-0.005)
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B.6.2 Prompt-wise changes with fixed experiment (e.g., RW17 or
Abstract)

The subsequent figures show prompt-wise changes within a fixed experiment (RW17 or Abstract).
These figures allow to visually identify outliers and the most changing agents between prompt
styles (Numeric vs CoT) within a given experiment. See also Table B.18 for a summary of the
top-3 most/least changing agents per prompt-category (PC) comparisons given a experiment and
CBN parameter (Param).
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Experiment RW17: Numeric → CoT; N=25 matched agents

Agents
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claude-3-5-haiku-20241022
claude-3-7-sonnet-20250219
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Figure B.20: Pairwise prompt-category comparisons with fixed experiment, here RW17.
Each panel shows LOOCV R2 (top left) and CBN parameters (rest) for each agent (color-coded)
in two conditions (left/right per panel). These plots allow to visually identify outliers and the
most changing agents between conditions (i.e., agents with a slope).

90



B.6 Most and Least changing LLMs across prompt-category & content manipulations

Numeric CoT

0.4

0.5

0.6

0.7

0.8

0.9

1.0

LOOCV R2

Numeric CoT
0.0

0.2

0.4

0.6

0.8

1.0
CBN-parameter b

Numeric CoT
0.0

0.2

0.4

0.6

0.8

1.0
CBN-parameter m1

Numeric CoT
0.0

0.2

0.4

0.6

0.8

1.0
CBN-parameter m2

Numeric CoT
0.0

0.2

0.4

0.6

0.8

1.0
CBN-parameter p(C)

Experiment Abstract: Numeric → CoT; N=27 matched agents
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Figure B.21: Pairwise prompt-category comparisons with fixed experiment, here abstract.
Each panel shows LOOCV R2 (top left) and CBN parameters (rest) for each agent (color-coded)
in two conditions (left/right per panel). These plots allow to visually identify outliers and the
most changing agents between conditions (i.e., agents with a slope).
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Experiment RW17-Over: Numeric → CoT; N=20 matched agents

Agents
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claude-3-5-haiku-20241022
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Figure B.22: Pairwise prompt-category comparisons with fixed experiment, here RW17-
overloaded. Each panel shows LOOCV R2 (top left) and CBN parameters (rest) for each agent
(color-coded) in two conditions (left/right per panel). These plots allow to visually identify
outliers and the most changing agents between conditions (i.e., agents with a slope).
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Experiment Abstract-Overloaded: Numeric → CoT; N=14 matched agents
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claude-3-5-haiku-20241022
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Figure B.23: Pairwise prompt-category comparisons with fixed experiment, here abstract-
overloaded. Each panel shows LOOCV R2 (top left) and CBN parameters (rest) for each agent
(color-coded) in two conditions (left/right per panel). These plots allow to visually identify
outliers and the most changing agents between conditions (i.e., agents with a slope).
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Table B.18: Top-3 most/least-changing agents per prompt-category (PC) comparisons (by signed
∆; ∆ = A−B) for given experiment and CBN parameter (Param).

Experiment PC Pair Param Most Least
Abstract-Over Num → CoT b claude-opus-4-20250514 (+0.835); claude-

opus-4-1-20250805 (+0.826); gpt-5-mini-
v_low-r_minimal (-0.222)

gpt-5-v_low-r_minimal (+0.002); claude-3-7-
sonnet-20250219 (-0.003); claude-sonnet-4-
20250514 (-0.011)

Abstract-Over Num → CoT m1 claude-opus-4-1-20250805 (-0.869); claude-
opus-4-20250514 (-0.867); gemini-2.5-flash-
lite (+0.250)

gemini-2.5-flash (-0.007); gemini-2.5-pro (-
0.013); claude-sonnet-4-20250514 (+0.023)

Abstract-Over Num → CoT m2 claude-opus-4-20250514 (-0.615); claude-
opus-4-1-20250805 (-0.495); gpt-5-nano-
v_low-r_minimal (+0.464)

gemini-2.5-flash (-0.007); gemini-2.5-pro (-
0.013); claude-sonnet-4-20250514 (+0.023)

Abstract-Over Num → CoT p(C) claude-sonnet-4-20250514 (+0.073); gpt-5-
mini-v_low-r_minimal (-0.068); claude-opus-
4-1-20250805 (+0.059)

claude-3-opus (-0.001); gemini-2.5-pro (-
0.001); gemini-2.5-flash (-0.017)

Abstract Num → CoT b gpt-5-mini-v_low-r_minimal (-0.223);
gemini-2.5-flash-lite (-0.208); claude-3-
haiku-20240307 (+0.202)

claude-opus-4-20250514 (+0.005); gpt-3.5-
turbo (-0.005); claude-3-opus (-0.011)

Abstract Num → CoT m1 gpt-5-nano-v_low-r_medium (-0.477); gpt-
5-nano-v_low-r_minimal (+0.307); gpt-3.5-
turbo (+0.215)

gemini-2.5-flash (-0.009); gpt-5-nano-v_low-
r_low (+0.009); gemini-2.5-pro (-0.010)

Abstract Num → CoT m2 gemini-2.5-flash-lite (+0.680); claude-opus-
4-20250514 (+0.294); gpt-3.5-turbo (+0.215)

gemini-2.5-pro (+0.004); gemini-2.5-flash (-
0.009); claude-sonnet-4-20250514 (+0.022)

Abstract Num → CoT p(C) gpt-4.1-mini (-0.105); claude-3-haiku-
20240307 (-0.069); gpt-5-mini-v_low-
r_minimal (-0.068)

gemini-2.5-pro (-0.000); o1 (-0.002); claude-
3-7-sonnet-20250219 (-0.003)

RW17 Num → CoT b gemini-2.5-flash-lite (-0.349); gpt-5-v_low-
r_medium (+0.161); gpt-4 (+0.158)

claude-opus-4-1-20250805 (-0.029); gemini-
2.5-flash (+0.031); o3 (+0.031)

RW17 Num → CoT m1 gpt-5-mini-v_low-r_minimal (+0.425); gpt-4
(+0.360); gemini-2.5-flash-lite (+0.349)

claude-opus-4-1-20250805 (-0.004); claude-
opus-4-20250514 (-0.022); gemini-2.5-flash
(-0.022)

RW17 Num → CoT m2 gemini-2.5-flash-lite (+0.349); gpt-5-v_low-
r_medium (-0.247); gpt-5-nano-v_low-
r_minimal (+0.229)

claude-opus-4-1-20250805 (-0.004); gemini-
1.5-pro (+0.010); gemini-2.5-flash (-0.022)

RW17 Num → CoT p(C) claude-3-5-haiku-20241022 (+0.190);
gemini-1.5-pro (-0.105); claude-3-sonnet-
20240229 (-0.085)

o3-mini (+0.000); gpt-5-v_low-r_low
(+0.001); gpt-5-mini-v_low-r_medium
(-0.002)

RW17-Over Num → CoT b gpt-3.5-turbo (-0.374); gemini-2.5-flash-lite
(-0.148); claude-3-haiku-20240307 (-0.132)

gpt-4 (+0.006); gpt-5-v_low-r_minimal (-
0.010); claude-sonnet-4-20250514 (-0.015)

RW17-Over Num → CoT m1 claude-3-5-haiku-20241022 (+0.266); gpt-
5-mini-v_low-r_minimal (+0.258); gpt-3.5-
turbo (+0.256)

gpt-4.1-mini (-0.000); claude-sonnet-4-
20250514 (+0.004); claude-3-7-sonnet-
20250219 (+0.010)

RW17-Over Num → CoT m2 gpt-4 (-0.274); gpt-3.5-turbo (+0.256);
gemini-2.5-flash-lite (+0.252)

gpt-4.1-mini (-0.000); claude-sonnet-4-
20250514 (+0.004); claude-3-7-sonnet-
20250219 (+0.010)

RW17-Over Num → CoT p(C) gpt-3.5-turbo (-0.102); claude-3-haiku-
20240307 (-0.084); gpt-5-mini-v_low-
r_minimal (-0.082)

gpt-5-nano-v_low-r_low (+0.002); gpt-5-
v_low-r_minimal (+0.002); gpt-5-mini-
v_low-r_low (-0.004)

94
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B.7 Fitting Metrics and Parameter Values for Causal
Bayesian Network (CBN) for all Agents and
Experiments

B.7.1 RW17 and Abstract, Numeric Prompts

b m1 m2 p(C1) p(C2)

Causal Bayes Net (CBN) Parameter

gemini-2.5-pro | all | 3 | 0.998

gemini-2.5-flash | all | 3 | 0.990

gpt-5-nano-v low-r high | all | 3 | 0.980

gpt-4.1 | all | 3 | 0.976

gpt-4o | all | 4 | 0.966

o3-mini | all | 3 | 0.962

claude-3-7-sonnet-20250219 | all | 3 | 0.960

gpt-5-nano-v low-r medium | all | 3 | 0.956

gpt-5-nano-v low-r low | all | 4 | 0.951

gpt-5-v low-r low | all | 3 | 0.947

gpt-5-v low-r medium | all | 3 | 0.946

claude-opus-4-1-20250805 | all | 3 | 0.937

humans | all | 3 | 0.937

claude-opus-4-20250514 | all | 3 | 0.936

o3 | all | 3 | 0.935

gpt-5-mini-v low-r medium | all | 3 | 0.930

gpt-5-mini-v low-r high | all | 3 | 0.919

gpt-5-mini-v low-r low | all | 3 | 0.916

claude-sonnet-4-20250514 | all | 3 | 0.902

gpt-4.1-mini | all | 3 | 0.880

gemini-1.5-pro | all | 3 | 0.876

gpt-5-v low-r minimal | all | 3 | 0.848

claude-3-sonnet-20240229 | all | 3 | 0.836

claude-3-5-haiku-20241022 | all | 4 | 0.694

gpt-4 | all | 4 | 0.632

claude-3-haiku-20240307 | all | 3 | 0.580

gpt-3.5-turbo | all | 3 | 0.566

gpt-5-mini-v low-r minimal | all | 4 | 0.470

gpt-5-nano-v low-r minimal | all | 3 | 0.468

gemini-2.5-flash-lite | all | 3 | 0.277
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(a) RW17, Numeric

b m1 m2 p(C1) p(C2)

Causal Bayes Net (CBN) Parameter

gemini-2.5-pro | all | 3 | 1.000

gemini-2.5-flash | all | 3 | 0.998

gpt-5-mini-v low-r high | all | 4 | 0.996

gpt-5-v low-r medium | all | 3 | 0.981

gpt-5-mini-v low-r medium | all | 3 | 0.974

gpt-4o | all | 3 | 0.973

gpt-5-nano-v low-r medium | all | 3 | 0.971

gpt-5-v low-r low | all | 3 | 0.970

o1-mini | all | 3 | 0.961

gpt-5-mini-v low-r low | all | 3 | 0.958

gpt-5-nano-v low-r low | all | 3 | 0.955

o3 | all | 3 | 0.946

o1 | all | 3 | 0.943

claude-3-opus | all | 3 | 0.938

gpt-4 | all | 3 | 0.929

o3-mini | all | 3 | 0.929

gpt-4.1 | all | 3 | 0.927

gpt-4.1-mini | all | 3 | 0.903

claude-3-7-sonnet-20250219 | all | 3 | 0.896

gpt-5-v low-r minimal | all | 3 | 0.895

gemini-1.5-pro | all | 4 | 0.883

gpt-5-mini-v low-r minimal | all | 3 | 0.868

claude-opus-4-1-20250805 | all | 4 | 0.858

claude-sonnet-4-20250514 | all | 3 | 0.842

claude-opus-4-20250514 | all | 4 | 0.782

gemini-2.5-flash-lite | all | 4 | 0.585

claude-3-haiku-20240307 | all | 3 | 0.455

claude-3-5-haiku-20241022 | all | 3 | 0.365

gpt-3.5-turbo | all | 3 | 0.342

gpt-5-nano-v low-r minimal | all | 3 | 0.341
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(b) Abstract, Numeric

Figure B.24: Parameter Values of best fitting causal Bayes Nets (CBN) for Numeric Prompts
in RW17 and Abstract experiments. Panels (a) and (b) show RW17 prompts (human baseline
available) and Abstract prompts, respectively. Each row is an agent ordered according to reasoning
consistency (LOOCV R2 ∈ [− inf, 1]) Columns (left to right) are: leak (background probability
of effect p(E = 1 | C1 = 0, C2 = 0)), causal strengths m1 and m2 (larger values = stronger/more
deterministic influence), and prior probabilities of causes. Parameter values live in [0, 1].
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Appendix B Additional Results

Table B.19: Best CBN fits per agent for RW17 in Figure B.24 (loss: huber; optimizer: lbfgs;
link-function: noisy-or; learning rate: 0.100). MAE and RMSE ∈ [0, 1], Huber loss ∼∈ [0, 05]
with δ = 1

Agent Domain
num

params MAE RMSE loss R2

LOOCV
R2

LOOCV
RMSE

gemini-2.5-pro all 3 0.024 0.052 0.032 0.981 0.998 0.016
gemini-2.5-flash all 3 0.042 0.077 0.028 0.955 0.990 0.036
gpt-5-nano-v_low-r_high all 3 0.085 0.126 0.028 0.874 0.980 0.049
gpt-4.1 all 3 0.042 0.091 0.033 0.944 0.976 0.060
gpt-4o all 4 0.074 0.125 0.037 0.897 0.966 0.071
o3-mini all 3 0.053 0.102 0.036 0.930 0.962 0.076
claude-3-7-sonnet-20250219 all 3 0.074 0.117 0.032 0.897 0.960 0.074
gpt-5-nano-v_low-r_medium all 3 0.099 0.115 0.022 0.869 0.956 0.066
gpt-5-nano-v_low-r_low all 4 0.083 0.115 0.013 0.803 0.951 0.056
gpt-5-v_low-r_low all 3 0.076 0.089 0.024 0.927 0.947 0.077
gpt-5-v_low-r_medium all 3 0.075 0.088 0.026 0.934 0.946 0.081
claude-opus-4-1-20250805 all 3 0.096 0.128 0.016 0.792 0.937 0.067
claude-opus-4-20250514 all 3 0.090 0.125 0.014 0.790 0.936 0.067
o3 all 3 0.076 0.089 0.019 0.916 0.935 0.079
gpt-5-mini-v_low-r_medium all 3 0.080 0.095 0.023 0.912 0.930 0.086
gpt-5-mini-v_low-r_high all 3 0.086 0.101 0.025 0.907 0.919 0.096
gpt-5-mini-v_low-r_low all 3 0.083 0.098 0.023 0.904 0.916 0.094
claude-sonnet-4-20250514 all 3 0.088 0.102 0.021 0.897 0.902 0.103
gpt-4.1-mini all 3 0.122 0.177 0.040 0.776 0.880 0.124
gemini-1.5-pro all 3 0.147 0.190 0.025 0.666 0.876 0.103
gpt-5-v_low-r_minimal all 3 0.120 0.144 0.023 0.784 0.848 0.120
claude-3-sonnet-20240229 all 3 0.136 0.166 0.017 0.533 0.836 0.081
claude-3-5-haiku-20241022 all 4 0.121 0.167 0.018 0.529 0.694 0.123
gpt-4 all 4 0.065 0.129 0.019 0.726 0.632 0.145
claude-3-haiku-20240307 all 3 0.154 0.190 0.026 0.400 0.580 0.136
gpt-3.5-turbo all 3 0.089 0.109 0.027 0.363 0.566 0.068
gpt-5-mini-v_low-r_minimal all 4 0.106 0.139 0.013 0.565 0.470 0.145
gpt-5-nano-v_low-r_minimal all 3 0.142 0.197 0.023 0.108 0.468 0.071
gemini-2.5-flash-lite all 3 0.205 0.271 0.037 0.231 0.277 0.187
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B.7 Fitting Metrics and Parameter Values for Causal Bayesian Network (CBN) for all
Agents and Experiments

Table B.20: Best CBN fits per agent for Abstract in Figure B.24 (loss: huber; optimizer: lbfgs;
link-function: noisy-or; learning rate: 0.100). MAE and RMSE ∈ [0, 1], Huber loss ∼∈ [0, 05]
with δ = 1

Agent Domain
num

params MAE RMSE loss R2

LOOCV
R2

LOOCV
RMSE

gemini-2.5-pro all 3 0.009 0.030 0.032 0.994 1.000 0.008
gemini-2.5-flash all 3 0.012 0.038 0.033 0.990 0.998 0.018
gpt-5-mini-v_low-r_high all 4 0.015 0.027 0.031 0.995 0.996 0.025
gpt-5-v_low-r_medium all 3 0.043 0.067 0.030 0.967 0.981 0.053
gpt-5-mini-v_low-r_medium all 3 0.056 0.078 0.026 0.951 0.974 0.057
gpt-4o all 3 0.103 0.184 0.044 0.792 0.973 0.062
gpt-5-nano-v_low-r_medium all 3 0.075 0.099 0.027 0.919 0.971 0.059
gpt-5-v_low-r_low all 3 0.061 0.080 0.030 0.953 0.970 0.065
o1-mini all 3 0.085 0.123 0.026 0.862 0.961 0.064
gpt-5-mini-v_low-r_low all 3 0.067 0.083 0.024 0.940 0.958 0.071
gpt-5-nano-v_low-r_low all 3 0.102 0.145 0.018 0.715 0.955 0.053
o3 all 3 0.067 0.085 0.017 0.920 0.946 0.071
o1 all 3 0.066 0.084 0.029 0.947 0.943 0.088
claude-3-opus all 3 0.112 0.167 0.018 0.625 0.938 0.060
gpt-4 all 3 0.128 0.177 0.029 0.730 0.929 0.084
o3-mini all 3 0.110 0.144 0.040 0.847 0.929 0.097
gpt-4.1 all 3 0.085 0.127 0.028 0.868 0.927 0.093
gpt-4.1-mini all 3 0.166 0.240 0.039 0.547 0.903 0.092
claude-3-7-sonnet-20250219 all 3 0.095 0.143 0.034 0.843 0.896 0.116
gpt-5-v_low-r_minimal all 3 0.104 0.144 0.025 0.817 0.895 0.105
gemini-1.5-pro all 4 0.143 0.216 0.033 0.601 0.883 0.098
gpt-5-mini-v_low-r_minimal all 3 0.119 0.163 0.015 0.572 0.868 0.078
claude-opus-4-1-20250805 all 4 0.081 0.123 0.035 0.885 0.858 0.131
claude-sonnet-4-20250514 all 3 0.116 0.158 0.023 0.731 0.842 0.117
claude-opus-4-20250514 all 4 0.083 0.122 0.035 0.873 0.782 0.156
gemini-2.5-flash-lite all 4 0.185 0.253 0.045 0.491 0.585 0.187
claude-3-haiku-20240307 all 3 0.279 0.313 0.077 0.140 0.455 0.141
claude-3-5-haiku-20241022 all 3 0.239 0.292 0.047 0.160 0.365 0.158
gpt-3.5-turbo all 3 0.168 0.216 0.045 0.049 0.342 0.058
gpt-5-nano-v_low-r_minimal all 3 0.221 0.271 0.040 0.090 0.341 0.089
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Appendix B Additional Results

B.7.2 RW17 and Abstract, CoT Prompts

b m1 m2 p(C1) p(C2)

Causal Bayes Net (CBN) Parameter

gemini-1.5-pro | all | 4 | 0.994

claude-opus-4-20250514 | all | 4 | 0.985

gemini-2.5-flash | all | 3 | 0.985

gemini-2.5-pro | all | 3 | 0.984

gpt-5-nano-v low-r low | all | 3 | 0.981

claude-sonnet-4-20250514 | all | 3 | 0.974

gemini-2.5-flash-lite | all | 3 | 0.973

gpt-4.1 | all | 3 | 0.968

claude-3-7-sonnet-20250219 | all | 3 | 0.963

claude-opus-4-1-20250805 | all | 3 | 0.957

claude-3-opus | all | 3 | 0.950

o3-mini | all | 3 | 0.949

gpt-4o | all | 3 | 0.946

o3 | all | 3 | 0.936

gpt-5-v low-r low | all | 3 | 0.931

gpt-4.1-mini | all | 3 | 0.924

gpt-5-nano-v low-r minimal | all | 3 | 0.922

gpt-5-mini-v low-r medium | all | 3 | 0.915

gpt-4 | all | 4 | 0.913

claude-3-sonnet-20240229 | all | 3 | 0.912

gpt-5-v low-r minimal | all | 3 | 0.908

gpt-5-mini-v low-r minimal | all | 3 | 0.898

gpt-5-mini-v low-r low | all | 3 | 0.886

gpt-5-v low-r medium | all | 3 | 0.884

claude-3-5-haiku-20241022 | all | 4 | 0.805

claude-3-haiku-20240307 | all | 3 | 0.692
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(a) RW17, CoT

b m1 m2 p(C1) p(C2)

Causal Bayes Net (CBN) Parameter

gemini-2.5-flash | all | 3 | 0.996

gemini-2.5-pro | all | 4 | 0.992

gpt-5-nano-v low-r medium | all | 4 | 0.984

gpt-5-v low-r low | all | 3 | 0.968

claude-sonnet-4-20250514 | all | 3 | 0.964

gpt-5-nano-v low-r minimal | all | 4 | 0.964

o3 | all | 3 | 0.957

gemini-2.5-flash-lite | all | 3 | 0.956

claude-opus-4-20250514 | all | 3 | 0.954

gpt-4.1 | all | 3 | 0.954

o1 | all | 3 | 0.952

gpt-5-v low-r minimal | all | 3 | 0.951

gpt-4.1-mini | all | 3 | 0.950

gpt-4o | all | 3 | 0.943

o1-mini | all | 3 | 0.941

gpt-5-nano-v low-r low | all | 4 | 0.939

o3-mini | all | 3 | 0.934

claude-3-7-sonnet-20250219 | all | 3 | 0.930

gpt-5-mini-v low-r low | all | 3 | 0.929

gemini-1.5-pro | all | 3 | 0.929

gpt-5-mini-v low-r medium | all | 3 | 0.921

gpt-4 | all | 3 | 0.919

gpt-5-mini-v low-r minimal | all | 3 | 0.918

claude-3-opus | all | 3 | 0.841

claude-3-5-haiku-20241022 | all | 3 | 0.824

claude-3-haiku-20240307 | all | 3 | 0.759

gpt-3.5-turbo | all | 3 | 0.397
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(b) Abstract, CoT

Figure B.25: Parameter Values of best fitting causal Bayes Nets (CBN) for CoT Prompts in
RW17 and Abstract experiments. Panels (a) and (b) show RW17 prompts (human baseline
available) and Abstract prompts, respectively. Each row is an agent ordered according to reasoning
consistency (LOOCV R2 ∈ [− inf, 1]) Columns (left to right) are: leak (background probability
of effect p(E = 1 | C1 = 0, C2 = 0)), causal strengths m1 and m2 (larger values = stronger/more
deterministic influence), and prior probabilities of causes. Parameter values live in [0, 1].
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B.7 Fitting Metrics and Parameter Values for Causal Bayesian Network (CBN) for all
Agents and Experiments

Table B.21: Best CBN fits per agent for RW17 in Figure B.25; (loss: huber; optimizer: lbfgs;
link-function: noisy-or; learning rate: 0.100). MAE and RMSE ∈ [0, 1], Huber loss ∼∈ [0, 05]
with δ = 1

Agent Domain
num

params MAE RMSE loss R2

LOOCV
R2

LOOCV
RMSE

gemini-1.5-pro all 4 0.066 0.088 0.011 0.892 0.994 0.020
claude-opus-4-20250514 all 4 0.039 0.070 0.010 0.922 0.985 0.033
gemini-2.5-flash all 3 0.047 0.071 0.025 0.958 0.985 0.044
gemini-2.5-pro all 3 0.056 0.075 0.026 0.955 0.984 0.046
gpt-5-nano-v_low-r_low all 3 0.076 0.099 0.007 0.751 0.981 0.026
claude-sonnet-4-20250514 all 3 0.045 0.058 0.007 0.938 0.974 0.039
gemini-2.5-flash-lite all 3 0.071 0.093 0.013 0.887 0.973 0.045
gpt-4.1 all 3 0.050 0.069 0.023 0.958 0.968 0.063
claude-3-7-sonnet-20250219 all 3 0.053 0.066 0.014 0.946 0.963 0.057
claude-opus-4-1-20250805 all 3 0.056 0.067 0.010 0.932 0.957 0.055
claude-3-opus all 3 0.075 0.104 0.009 0.778 0.950 0.049
o3-mini all 3 0.069 0.099 0.027 0.920 0.949 0.080
gpt-4o all 3 0.070 0.090 0.016 0.904 0.946 0.070
o3 all 3 0.073 0.085 0.014 0.899 0.936 0.070
gpt-5-v_low-r_low all 3 0.077 0.091 0.012 0.880 0.931 0.069
gpt-4.1-mini all 3 0.069 0.089 0.018 0.911 0.924 0.084
gpt-5-nano-v_low-r_minimal all 3 0.091 0.115 0.008 0.617 0.922 0.046
gpt-5-mini-v_low-r_medium all 3 0.076 0.090 0.015 0.896 0.915 0.083
gpt-4 all 4 0.064 0.088 0.008 0.835 0.913 0.066
claude-3-sonnet-20240229 all 3 0.098 0.130 0.010 0.646 0.912 0.059
gpt-5-v_low-r_minimal all 3 0.065 0.078 0.007 0.850 0.908 0.064
gpt-5-mini-v_low-r_minimal all 3 0.081 0.103 0.015 0.843 0.898 0.085
gpt-5-mini-v_low-r_low all 3 0.079 0.093 0.016 0.883 0.886 0.095
gpt-5-v_low-r_medium all 3 0.077 0.094 0.009 0.812 0.884 0.078
claude-3-5-haiku-20241022 all 4 0.107 0.136 0.019 0.595 0.805 0.084
claude-3-haiku-20240307 all 3 0.124 0.162 0.025 0.564 0.692 0.122
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Appendix B Additional Results

Table B.22: Best CBN fits per agent for Abstract in Figure B.25; (loss: huber; optimizer: lbfgs;
link-function: noisy-or; learning rate: 0.100). MAE and RMSE ∈ [0, 1], Huber loss ∼∈ [0, 05]
with δ = 1

Agent Domain
num

params MAE RMSE loss R2

LOOCV
R2

LOOCV
RMSE

gemini-2.5-flash all 3 0.024 0.047 0.030 0.984 0.996 0.023
gemini-2.5-pro all 4 0.020 0.039 0.030 0.989 0.992 0.035
gpt-5-nano-v_low-r_medium all 4 0.025 0.043 0.014 0.945 0.984 0.023
gpt-5-v_low-r_low all 3 0.066 0.081 0.020 0.938 0.968 0.060
claude-sonnet-4-20250514 all 3 0.058 0.076 0.011 0.920 0.964 0.052
gpt-5-nano-v_low-r_minimal all 4 0.094 0.123 0.011 0.681 0.964 0.037
o3 all 3 0.053 0.065 0.011 0.941 0.957 0.057
gemini-2.5-flash-lite all 3 0.075 0.098 0.018 0.899 0.956 0.065
claude-opus-4-20250514 all 3 0.042 0.056 0.019 0.971 0.954 0.068
gpt-4.1 all 3 0.060 0.080 0.021 0.936 0.954 0.071
o1 all 3 0.060 0.075 0.017 0.939 0.952 0.068
gpt-5-v_low-r_minimal all 3 0.065 0.080 0.012 0.911 0.951 0.062
gpt-4.1-mini all 3 0.069 0.086 0.017 0.904 0.950 0.064
gpt-4o all 3 0.077 0.105 0.019 0.871 0.943 0.070
o1-mini all 3 0.079 0.099 0.018 0.883 0.941 0.071
gpt-5-nano-v_low-r_low all 4 0.091 0.133 0.015 0.692 0.939 0.054
o3-mini all 3 0.088 0.111 0.028 0.887 0.934 0.085
claude-3-7-sonnet-20250219 all 3 0.065 0.087 0.020 0.921 0.930 0.084
gpt-5-mini-v_low-r_low all 3 0.073 0.090 0.017 0.905 0.929 0.079
gemini-1.5-pro all 3 0.090 0.131 0.020 0.825 0.929 0.080
gpt-5-mini-v_low-r_medium all 3 0.077 0.095 0.020 0.908 0.921 0.090
gpt-4 all 3 0.084 0.116 0.017 0.828 0.919 0.080
gpt-5-mini-v_low-r_minimal all 3 0.078 0.100 0.016 0.867 0.918 0.080
claude-3-opus all 3 0.116 0.151 0.014 0.552 0.841 0.081
claude-3-5-haiku-20241022 all 3 0.153 0.191 0.024 0.443 0.824 0.086
claude-3-haiku-20240307 all 3 0.188 0.229 0.039 0.141 0.759 0.056
gpt-3.5-turbo all 3 0.221 0.282 0.058 0.109 0.397 0.105
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B.7 Fitting Metrics and Parameter Values for Causal Bayesian Network (CBN) for all
Agents and Experiments

B.7.3 RW17-Overloaded, Numeric and CoT Prompts

b m1 m2 p(C1) p(C2)

Causal Bayes Net (CBN) Parameter

gemini-2.5-pro | all | 3 | 0.989

gpt-4o | all | 4 | 0.987

gemini-2.5-flash | all | 3 | 0.983

claude-sonnet-4-20250514 | all | 3 | 0.975

gpt-5-nano-v low-r low | all | 3 | 0.948

gpt-4.1 | all | 3 | 0.937

gpt-5-v low-r low | all | 3 | 0.930

gpt-4.1-mini | all | 3 | 0.920

gpt-5-mini-v low-r low | all | 3 | 0.881

gemini-1.5-pro | all | 3 | 0.859

gpt-5-mini-v low-r minimal | all | 4 | 0.857

claude-3-7-sonnet-20250219 | all | 3 | 0.849

gpt-5-v low-r minimal | all | 3 | 0.657

claude-3-opus | all | 4 | 0.654

claude-3-5-haiku-20241022 | all | 4 | 0.628

claude-3-haiku-20240307 | all | 3 | 0.552

gpt-3.5-turbo | all | 3 | 0.536

gpt-5-nano-v low-r minimal | all | 3 | 0.510

gpt-4 | all | 4 | 0.390

gemini-2.5-flash-lite | all | 3 | 0.313
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(a) RW17 Overloaded, Numeric

b m1 m2 p(C1) p(C2)

Causal Bayes Net (CBN) Parameter

gemini-2.5-pro | all | 3 | 0.980

gemini-1.5-pro | all | 4 | 0.975

claude-3-opus | all | 4 | 0.973

gemini-2.5-flash | all | 3 | 0.969

claude-3-7-sonnet-20250219 | all | 3 | 0.965

gpt-4.1 | all | 3 | 0.963

claude-sonnet-4-20250514 | all | 3 | 0.962

gpt-5-nano-v low-r low | all | 3 | 0.961

gpt-4o | all | 3 | 0.956

gpt-4.1-mini | all | 3 | 0.953

gemini-2.5-flash-lite | all | 3 | 0.952

gpt-5-v low-r low | all | 3 | 0.934

gpt-4 | all | 3 | 0.913

gpt-5-v low-r minimal | all | 3 | 0.903

gpt-5-mini-v low-r minimal | all | 3 | 0.901

gpt-5-nano-v low-r minimal | all | 3 | 0.894

gpt-5-mini-v low-r medium | all | 3 | 0.884

gpt-5-mini-v low-r low | all | 3 | 0.878

claude-3-5-haiku-20241022 | all | 3 | 0.699

claude-3-haiku-20240307 | all | 3 | 0.697

gpt-3.5-turbo | all | 3 | 0.517
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(b) RW17 Overloaded, CoT

Figure B.26: Parameter Values of best fitting causal Bayes Nets (CBN) for CoT Prompts in
RW17 and Abstract experiments. Panels (a) and (b) show RW17 prompts (human baseline
available) and Abstract prompts, respectively. Each row is an agent ordered according to reasoning
consistency (LOOCV R2 ∈ [− inf, 1]) Columns (left to right) are: leak (background probability
of effect p(E = 1 | C1 = 0, C2 = 0)), causal strengths m1 and m2 (larger values = stronger/more
deterministic influence), and prior probabilities of causes. Parameter values live in [0, 1].
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Appendix B Additional Results

Table B.23: Best CBN fits per agent for RW17 Overloaded in Figure B.26; (Numeric, loss: huber;
optimizer: lbfgs; link-function: noisy-or; learning rate: 0.100). MAE and RMSE ∈ [0, 1], Huber
loss ∼∈ [0, 05] with δ = 1

Agent Domain
num

params MAE RMSE loss R2

LOOCV
R2

LOOCV
RMSE

gemini-2.5-pro all 3 0.043 0.081 0.031 0.953 0.989 0.039
gpt-4o all 4 0.135 0.188 0.040 0.754 0.987 0.040
gemini-2.5-flash all 3 0.051 0.082 0.026 0.944 0.983 0.045
claude-sonnet-4-20250514 all 3 0.059 0.099 0.010 0.840 0.975 0.039
gpt-5-nano-v_low-r_low all 3 0.085 0.117 0.011 0.754 0.948 0.051
gpt-4.1 all 3 0.100 0.125 0.023 0.852 0.937 0.081
gpt-5-v_low-r_low all 3 0.080 0.092 0.021 0.915 0.930 0.086
gpt-4.1-mini all 3 0.146 0.187 0.028 0.648 0.920 0.079
gpt-5-mini-v_low-r_low all 3 0.085 0.105 0.019 0.875 0.881 0.104
gemini-1.5-pro all 3 0.135 0.182 0.020 0.616 0.859 0.096
gpt-5-mini-v_low-r_minimal all 4 0.125 0.162 0.016 0.481 0.857 0.070
claude-3-7-sonnet-20250219 all 3 0.127 0.167 0.025 0.728 0.849 0.117
gpt-5-v_low-r_minimal all 3 0.131 0.162 0.019 0.657 0.657 0.156
claude-3-opus all 4 0.101 0.125 0.009 0.611 0.654 0.104
claude-3-5-haiku-20241022 all 4 0.103 0.134 0.027 0.442 0.628 0.101
claude-3-haiku-20240307 all 3 0.120 0.171 0.029 0.336 0.552 0.108
gpt-3.5-turbo all 3 0.079 0.095 0.024 0.372 0.536 0.063
gpt-5-nano-v_low-r_minimal all 3 0.166 0.222 0.028 0.108 0.510 0.070
gpt-4 all 4 0.117 0.162 0.016 0.533 0.390 0.159
gemini-2.5-flash-lite all 3 0.233 0.284 0.041 0.262 0.313 0.208
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B.7 Fitting Metrics and Parameter Values for Causal Bayesian Network (CBN) for all
Agents and Experiments

Table B.24: Best CBN fits per agent for RW17 Overloaded in Figure B.26; (CoT, loss: huber;
optimizer: lbfgs; link-function: noisy-or; learning rate: 0.100). MAE and RMSE ∈ [0, 1], Huber
loss ∼∈ [0, 05] with δ = 1

Agent Domain
num

params MAE RMSE loss R2

LOOCV
R2

LOOCV
RMSE

gemini-2.5-pro all 3 0.057 0.075 0.025 0.953 0.980 0.051
gemini-1.5-pro all 4 0.067 0.096 0.010 0.860 0.975 0.041
claude-3-opus all 4 0.076 0.105 0.009 0.804 0.973 0.038
gemini-2.5-flash all 3 0.057 0.080 0.022 0.941 0.969 0.059
claude-3-7-sonnet-20250219 all 3 0.051 0.063 0.013 0.948 0.965 0.054
gpt-4.1 all 3 0.063 0.083 0.017 0.922 0.963 0.059
claude-sonnet-4-20250514 all 3 0.049 0.067 0.008 0.919 0.962 0.047
gpt-5-nano-v_low-r_low all 3 0.081 0.103 0.008 0.711 0.961 0.035
gpt-4o all 3 0.081 0.098 0.013 0.852 0.956 0.054
gpt-4.1-mini all 3 0.073 0.089 0.013 0.884 0.953 0.057
gemini-2.5-flash-lite all 3 0.071 0.094 0.012 0.879 0.952 0.060
gpt-5-v_low-r_low all 3 0.070 0.084 0.011 0.890 0.934 0.067
gpt-4 all 3 0.076 0.108 0.008 0.735 0.913 0.061
gpt-5-v_low-r_minimal all 3 0.063 0.078 0.007 0.862 0.903 0.068
gpt-5-mini-v_low-r_minimal all 3 0.076 0.093 0.013 0.850 0.901 0.078
gpt-5-nano-v_low-r_minimal all 3 0.088 0.111 0.008 0.615 0.894 0.052
gpt-5-mini-v_low-r_medium all 3 0.083 0.099 0.014 0.852 0.884 0.090
gpt-5-mini-v_low-r_low all 3 0.082 0.097 0.013 0.855 0.878 0.091
claude-3-5-haiku-20241022 all 3 0.106 0.133 0.018 0.556 0.699 0.098
claude-3-haiku-20240307 all 3 0.130 0.170 0.020 0.557 0.697 0.121
gpt-3.5-turbo all 3 0.228 0.278 0.046 0.334 0.517 0.178

B.7.4 Abstract-Overloaded, Numeric and CoT Prompts
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Appendix B Additional Results

b m1 m2 p(C1) p(C2)

Causal Bayes Net (CBN) Parameter

gemini-2.5-flash | all | 3 | 0.998

gemini-2.5-pro | all | 4 | 0.997

gpt-5-v low-r minimal | all | 4 | 0.979

claude-3-opus | all | 3 | 0.898

claude-3-7-sonnet-20250219 | all | 4 | 0.862

claude-opus-4-20250514 | all | 4 | 0.857

gemini-1.5-pro | all | 3 | 0.854

claude-opus-4-1-20250805 | all | 4 | 0.823

gpt-5-mini-v low-r minimal | all | 3 | 0.783

claude-sonnet-4-20250514 | all | 3 | 0.749

gemini-2.5-flash-lite | all | 3 | 0.520

gpt-5-nano-v low-r minimal | all | 4 | 0.353

claude-3-haiku-20240307 | all | 3 | 0.311

claude-3-5-haiku-20241022 | all | 3 | 0.257
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(a) Abstract Overloaded, Numeric

b m1 m2 p(C1) p(C2)

Causal Bayes Net (CBN) Parameter

gemini-2.5-flash | all | 3 | 0.991

gemini-2.5-pro | all | 3 | 0.991

gemini-2.5-flash-lite | all | 3 | 0.968

claude-sonnet-4-20250514 | all | 3 | 0.958

gpt-5-v low-r minimal | all | 3 | 0.951

gemini-1.5-pro | all | 3 | 0.945

claude-3-7-sonnet-20250219 | all | 3 | 0.927

gpt-5-mini-v low-r minimal | all | 3 | 0.925

claude-3-5-haiku-20241022 | all | 4 | 0.903

gpt-5-nano-v low-r minimal | all | 3 | 0.846

claude-3-opus | all | 3 | 0.825

claude-3-haiku-20240307 | all | 3 | 0.570

claude-opus-4-1-20250805 | all | 3 | –

claude-opus-4-20250514 | all | 3 | –
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Figure B.27: Parameter Values of best fitting causal Bayes Nets (CBN) for CoT Prompts
in abstract and Abstract experiments. Panels (a) and (b) show abstract prompts (human
baseline available) and Abstract prompts, respectively. Each row is an agent ordered according to
reasoning consistency (LOOCV R2 ∈ [− inf, 1]) Columns (left to right) are: leak (background
probability of effect p(E = 1 | C1 = 0, C2 = 0)), causal strengths m1 and m2 (larger values =
stronger/more deterministic influence), and prior probabilities of causes. Parameter values live in
[0, 1].

Table B.25: Best CBN fits per agent for Abstract Overloaded in Figure B.27; (Numeric, loss:
huber; optimizer: lbfgs; link-function: noisy-or; learning rate: 0.100). MAE and RMSE ∈ [0, 1],
Huber loss ∼∈ [0, 05] with δ = 1

Agent Domain
num

params MAE RMSE loss R2

LOOCV
R2

LOOCV
RMSE

gemini-2.5-flash all 3 0.016 0.028 0.031 0.995 0.998 0.019
gemini-2.5-pro all 4 0.015 0.049 0.033 0.984 0.997 0.022
gpt-5-v_low-r_minimal all 4 0.079 0.127 0.028 0.875 0.979 0.051
claude-3-opus all 3 0.148 0.198 0.021 0.468 0.898 0.068
claude-3-7-sonnet-20250219 all 4 0.073 0.115 0.031 0.893 0.862 0.130
claude-opus-4-20250514 all 4 0.082 0.143 0.031 0.829 0.857 0.129
gemini-1.5-pro all 3 0.149 0.221 0.034 0.595 0.854 0.112
claude-opus-4-1-20250805 all 4 0.084 0.116 0.027 0.870 0.823 0.138
gpt-5-mini-v_low-r_minimal all 3 0.145 0.200 0.022 0.486 0.783 0.108
claude-sonnet-4-20250514 all 3 0.131 0.169 0.027 0.709 0.749 0.152
gemini-2.5-flash-lite all 3 0.236 0.302 0.050 0.344 0.520 0.193
gpt-5-nano-v_low-r_minimal all 4 0.289 0.325 0.061 0.039 0.353 0.067
claude-3-haiku-20240307 all 3 0.228 0.274 0.051 0.110 0.311 0.128
claude-3-5-haiku-20241022 all 3 0.273 0.316 0.063 0.115 0.257 0.164

104



Appendix

C

Declaration of Generative AI Usage
This work made use of generative AI for grammar and spell checking and to support software
development such as plotting code, in accordance with points 3.2 and 3.3 of the attached statement
of authorship. Table C.1 provides the used programs together with their version numbers.

Table C.1: Generative AI programs and their version numbers used in this work.

Program Version
LLM gpt-4o
LLM Claude-Sonnet-4
LLM Claude-Sonnet-3.7
LLM Claude-Opus-4.1
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